Computational Prediction of Structure, Function, and Interaction of Myzus persicae (Green Peach Aphid) Salivary Effector Proteins.

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant-microbe Interactions Pub Date : 2024-03-01 Epub Date: 2024-03-18 DOI:10.1094/MPMI-10-23-0154-FI
Thomas Waksman, Edmund Astin, S Ronan Fisher, William N Hunter, Jorunn I B Bos
{"title":"Computational Prediction of Structure, Function, and Interaction of <i>Myzus persicae</i> (Green Peach Aphid) Salivary Effector Proteins.","authors":"Thomas Waksman, Edmund Astin, S Ronan Fisher, William N Hunter, Jorunn I B Bos","doi":"10.1094/MPMI-10-23-0154-FI","DOIUrl":null,"url":null,"abstract":"<p><p>Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the <i>Myzus persicae</i> (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict <i>M. persicae</i> effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of <i>M. persicae</i> effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":"338-346"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-10-23-0154-FI","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算预测桃蚜唾液效应蛋白的结构、功能和相互作用。
与植物病原体类似,以韧皮部为食的昆虫(如蚜虫)也会在宿主体内释放效应蛋白,从而提高宿主的易感性,使其能够取食和侵染。尽管在鉴定和描述这些昆虫的效应蛋白方面取得了令人振奋的进展,但它们的功能在很大程度上仍然未知。最近,蛋白质结构预测算法取得了突破性进展,加上针对重要农业害虫的蛋白质组学和转录组学数据集的可用性,为探索效应蛋白结构和功能多样性提供了新的机会。在本研究中,我们试图通过预测和分析一组 71 个效应子候选蛋白的结构来深入了解桃蚜(Myzus persicae)的感染策略。我们使用了两种蛋白质结构预测方法:AlphaFold 和 OmegaFold,它们得出的结果相互一致。我们观察到候选效应蛋白的结构具有广泛的连续谱,从无序蛋白到球状酶。我们利用这些结构信息和最先进的计算方法来预测宿主植物效应蛋白的特性,包括功能和与宿主植物蛋白的相互作用。总之,我们的研究为预测M. persicae效应蛋白的结构、功能和相互作用提供了新的见解,并将指导必要的实验表征以解决新的假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant-microbe Interactions
Molecular Plant-microbe Interactions 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
250
审稿时长
3 months
期刊介绍: Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
期刊最新文献
A Diazeniumdiolate Signal in Pseudomonas syringae Upregulates Virulence Factors and Promotes Survival in Plants. SymRK Regulates G-Protein Signaling During Nodulation in Soybean (Glycine max) by Modifying RGS Phosphorylation and Activity. The Soybean Cyst Nematode Effector Cysteine Protease 1 (CPR1) Targets a Mitochondrial Soybean Branched-Chain Amino Acid Aminotransferase (GmBCAT1). Generation of inheritable A-to-G transitions using adenine base editing and NG-PAM Cas9 in Arabidopsis thaliana. Majority of the Highly Variable NLRs in Maize Share Genomic Location and Contain Additional Target-Binding Domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1