Vladimir I Kukulin, Anton V Bibikov, Eugene V Tkalya, Matteo Ceccarelli, Igor V Bodrenko
{"title":"<sup>7</sup>Be and <sup>22</sup>Na radionuclides for a new therapy for cancer.","authors":"Vladimir I Kukulin, Anton V Bibikov, Eugene V Tkalya, Matteo Ceccarelli, Igor V Bodrenko","doi":"10.1515/bmc-2022-0028","DOIUrl":null,"url":null,"abstract":"<p><p><sup>10</sup>B isotopes have been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for radiotherapy, which have ca. ten times larger cross section of absorption for neutrons and emit heavy charged particles. This would provide several key advantages for potential NCT, such as the possibility to use a lower nuclide concentration in the target tissues or a lower neutron irradiation flux. By detecting the characteristic γ radiation from the spontaneous decay of the radionuclides, one can image their biodistribution. These advantages could open up new possibilities for NCT applications as a safer and more efficient cancer therapy.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2022-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
10B isotopes have been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for radiotherapy, which have ca. ten times larger cross section of absorption for neutrons and emit heavy charged particles. This would provide several key advantages for potential NCT, such as the possibility to use a lower nuclide concentration in the target tissues or a lower neutron irradiation flux. By detecting the characteristic γ radiation from the spontaneous decay of the radionuclides, one can image their biodistribution. These advantages could open up new possibilities for NCT applications as a safer and more efficient cancer therapy.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.