Clustering for Bivariate Functional Data

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1116-5
Shi-yun Cao, Yan-qiu Zhou, Yan-ling Wan, Tao Zhang
{"title":"Clustering for Bivariate Functional Data","authors":"Shi-yun Cao,&nbsp;Yan-qiu Zhou,&nbsp;Yan-ling Wan,&nbsp;Tao Zhang","doi":"10.1007/s10255-024-1116-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The <i>k</i>-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, <i>k</i>-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1116-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The k-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, k-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
二元函数数据聚类
在本文中,我们考虑了二元功能数据的聚类问题,其中每个随机曲面由每个受试者重复记录的一组曲线组成。针对双变量功能数据,我们提出了基于边际功能主成分分析的 k-centres 曲面聚类方法,并提出了一种新的聚类标准,即同时考虑随机曲面及其在两个方向上的偏导数函数。此外,我们还考虑了另外两种聚类方法,即基于乘积函数主成分分析或双函数主成分分析的 k 中心曲面聚类方法。仿真结果表明,所提出的方法在正确分类率和调整后兰德指数方面都有不错的表现。通过对人类死亡率数据的实证分析,进一步说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1