MoS2 thin film decorated TiO2 nanotube arrays on flexible Ti foil for solar water splitting application

Bheem Singh, Sudhanshu Gautam, Govinda Chandra Behera, Rahul Kumar, Vishnu Aggarwal, Jai Shankar Tawale, Ramakrishnan Ganesan, Somnath Chanda Roy, Sunil Singh Kushvaha
{"title":"MoS2 thin film decorated TiO2 nanotube arrays on flexible Ti foil for solar water splitting application","authors":"Bheem Singh, Sudhanshu Gautam, Govinda Chandra Behera, Rahul Kumar, Vishnu Aggarwal, Jai Shankar Tawale, Ramakrishnan Ganesan, Somnath Chanda Roy, Sunil Singh Kushvaha","doi":"10.1088/2632-959x/ad1694","DOIUrl":null,"url":null,"abstract":"MoS<sub>2</sub>/TiO<sub>2</sub> nanostructure provides a lot of advantages in photoelectrochemical (PEC) applications due to the absorption of the wide spectrum solar radiation, more catalytically active sites, proper band alignment, and better separation of photogenerated charge carriers. Here we report PEC water splitting studies of MoS<sub>2</sub> thin film grown by chemical vapor deposition on TiO<sub>2</sub> nanotubes fabricated on flexible thin Ti foil. Raman and x-ray diffraction analysis confirmed the polycrystalline growth of a few layers MoS<sub>2</sub> on TiO<sub>2</sub>/Ti through their characteristic peaks. Field emission scanning electron microscopy revealed the nanotube surface morphology of TiO<sub>2</sub> having a diameter in the range of 200–300 nm. The chemical and electronic composition of MoS<sub>2</sub> and TiO<sub>2</sub> were investigated by x-ray photoelectron spectroscopy. PEC measurements performed in 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous electrolyte solution under 100 mW cm<sup>−2</sup> (AM 1.5G) simulated sunlight revealed 2-fold improved photocurrent density for MoS<sub>2</sub>/TiO<sub>2</sub> heterostructure (∼135.7 <italic toggle=\"yes\">μ</italic>A cm<sup>−2</sup>) compared to that of bare TiO<sub>2</sub> (∼70 <italic toggle=\"yes\">μ</italic>A cm<sup>−2</sup>). This is attributed to extended light absorption and more catalytically active surface area resulting from MoS<sub>2</sub> functionalization of the TiO<sub>2</sub> nanotubes, which results in better PEC activity. This study provides a new insight to explore the performance of thin metal foil-based photoelectrode in PEC applications that can be beneficial to develop roll-to-roll device fabrication to advance futuristic flexible electronics.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad1694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MoS2/TiO2 nanostructure provides a lot of advantages in photoelectrochemical (PEC) applications due to the absorption of the wide spectrum solar radiation, more catalytically active sites, proper band alignment, and better separation of photogenerated charge carriers. Here we report PEC water splitting studies of MoS2 thin film grown by chemical vapor deposition on TiO2 nanotubes fabricated on flexible thin Ti foil. Raman and x-ray diffraction analysis confirmed the polycrystalline growth of a few layers MoS2 on TiO2/Ti through their characteristic peaks. Field emission scanning electron microscopy revealed the nanotube surface morphology of TiO2 having a diameter in the range of 200–300 nm. The chemical and electronic composition of MoS2 and TiO2 were investigated by x-ray photoelectron spectroscopy. PEC measurements performed in 0.5 M Na2SO4 aqueous electrolyte solution under 100 mW cm−2 (AM 1.5G) simulated sunlight revealed 2-fold improved photocurrent density for MoS2/TiO2 heterostructure (∼135.7 μA cm−2) compared to that of bare TiO2 (∼70 μA cm−2). This is attributed to extended light absorption and more catalytically active surface area resulting from MoS2 functionalization of the TiO2 nanotubes, which results in better PEC activity. This study provides a new insight to explore the performance of thin metal foil-based photoelectrode in PEC applications that can be beneficial to develop roll-to-roll device fabrication to advance futuristic flexible electronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在柔性钛箔上装饰二氧化钛纳米管阵列的 MoS2 薄膜,用于太阳能水分离应用
MoS2/TiO2 纳米结构在光电化学(PEC)应用中具有很多优势,因为它能吸收宽光谱太阳辐射、具有更多的催化活性位点、适当的能带排列以及更好地分离光生电荷载流子。在此,我们报告了通过化学气相沉积法在柔性薄钛箔上制造的二氧化钛纳米管上生长的 MoS2 薄膜的 PEC 水分离研究。拉曼和 X 射线衍射分析通过其特征峰值证实了几层 MoS2 在 TiO2/Ti 上的多晶生长。场发射扫描电子显微镜显示了 TiO2 的纳米管表面形态,直径在 200-300 纳米之间。X 射线光电子能谱研究了 MoS2 和 TiO2 的化学和电子成分。在 0.5 M Na2SO4 电解质水溶液中,在 100 mW cm-2 (AM 1.5G) 模拟太阳光下进行的 PEC 测量显示,MoS2/TiO2 异质结构的光电流密度(∼135.7 μA cm-2)比裸 TiO2 的光电流密度(∼70 μA cm-2)提高了 2 倍。这归因于二氧化钛纳米管的 MoS2 功能化扩大了光吸收范围和催化活性表面积,从而提高了 PEC 活性。这项研究为探索基于薄金属箔的光电极在 PEC 应用中的性能提供了新的视角,有利于开发卷对卷器件制造技术,推动未来柔性电子器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis, characterization and magneto-structural properties of geometrical and compositional modulated nanowires A comparative study of broadband PbS quantum dots/graphene photodetectors with monolayer and bilayer graphene Occurrence of the collective Ziman limit of heat transport in cubic semiconductors Si, Ge, AlAs and AlP: scattering channels and size effects Structure and optical properties of ZnxCd1-xS and Cu:ZnxCd1-xS templated on DNA molecules Lycium ruthenicum stem extract mediated green synthesis of MnO2/Mn3(PO4)2 composite nanowire electrocatalyst for oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1