{"title":"Deformation stage division and early warning of landslides based on the statistical characteristics of landslide kinematic features","authors":"Junrong Zhang, Huiming Tang, Changdong Li, Wenping Gong, Biying Zhou, Yongquan Zhang","doi":"10.1007/s10346-023-02192-7","DOIUrl":null,"url":null,"abstract":"<p>Analyzing and quantifying the deformation process of landslides is of paramount importance in facilitating landslide early warning. As such, this study is committed to proposing a universal phenomenological model for deformation stages division and early warning of landslides based on the kinematic features. First, five landslide deformation patterns were classified based on the creep theory, and suggestions for stage division of each deformation pattern are presented. Then, the statistical characteristics of landslide velocity were analyzed, and a probability-based deformation stage division method was proposed. Finally, the Comprehensive Standardized Deformation Index (CSDI) model, which includes the calculation of the <span>\\({CSDI}^{M-M}\\)</span> (Min-Max normalization) and <span>\\({CSDI}^{M}\\)</span> (Mean normalization) was proposed and verified in 24 landslides worldwide. The results show that, except for the oscillating pattern, the <span>\\({CSDI}^{M-M}\\)</span> is feasible in the stages division of all deformation patterns with a strong correspondence with the actual state of the landslides. The <span>\\({CSDI}^{M}\\)</span> is a reliable landslide warning criterion and threshold determination method, as it is effective in the early warning of imminent landslides with a low false alarm rate. The CSDI model provides new insight into the division of landslide deformation stages and landslide risk assessment.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-023-02192-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing and quantifying the deformation process of landslides is of paramount importance in facilitating landslide early warning. As such, this study is committed to proposing a universal phenomenological model for deformation stages division and early warning of landslides based on the kinematic features. First, five landslide deformation patterns were classified based on the creep theory, and suggestions for stage division of each deformation pattern are presented. Then, the statistical characteristics of landslide velocity were analyzed, and a probability-based deformation stage division method was proposed. Finally, the Comprehensive Standardized Deformation Index (CSDI) model, which includes the calculation of the \({CSDI}^{M-M}\) (Min-Max normalization) and \({CSDI}^{M}\) (Mean normalization) was proposed and verified in 24 landslides worldwide. The results show that, except for the oscillating pattern, the \({CSDI}^{M-M}\) is feasible in the stages division of all deformation patterns with a strong correspondence with the actual state of the landslides. The \({CSDI}^{M}\) is a reliable landslide warning criterion and threshold determination method, as it is effective in the early warning of imminent landslides with a low false alarm rate. The CSDI model provides new insight into the division of landslide deformation stages and landslide risk assessment.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database