Multi-layer features template update object tracking algorithm based on SiamFC++

IF 2.4 4区 计算机科学 Eurasip Journal on Image and Video Processing Pub Date : 2024-01-04 DOI:10.1186/s13640-023-00616-x
Xiaofeng Lu, Xuan Wang, Zhengyang Wang, Xinhong Hei
{"title":"Multi-layer features template update object tracking algorithm based on SiamFC++","authors":"Xiaofeng Lu, Xuan Wang, Zhengyang Wang, Xinhong Hei","doi":"10.1186/s13640-023-00616-x","DOIUrl":null,"url":null,"abstract":"<p>SiamFC++ only extracts the object feature of the first frame as a tracking template, and only uses the highest level feature maps in both the classification branch and the regression branch, so that the respective characteristics of the two branches are not fully utilized. In view of this, the present paper proposes an object tracking algorithm based on SiamFC++. The algorithm uses the multi-layer features of the Siamese network to update template. First, FPN is used to extract feature maps from different layers of Backbone for classification branch and regression branch. Second, 3D convolution is used to update the tracking template of the object tracking algorithm. Next, a template update judgment condition is proposed based on mutual information. Finally, AlexNet is used as the backbone and GOT-10K as training set. Compared with SiamFC++, our algorithm obtains improved results on OTB100, VOT2016, VOT2018 and GOT-10k data sets, and the tracking process is real time.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-023-00616-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SiamFC++ only extracts the object feature of the first frame as a tracking template, and only uses the highest level feature maps in both the classification branch and the regression branch, so that the respective characteristics of the two branches are not fully utilized. In view of this, the present paper proposes an object tracking algorithm based on SiamFC++. The algorithm uses the multi-layer features of the Siamese network to update template. First, FPN is used to extract feature maps from different layers of Backbone for classification branch and regression branch. Second, 3D convolution is used to update the tracking template of the object tracking algorithm. Next, a template update judgment condition is proposed based on mutual information. Finally, AlexNet is used as the backbone and GOT-10K as training set. Compared with SiamFC++, our algorithm obtains improved results on OTB100, VOT2016, VOT2018 and GOT-10k data sets, and the tracking process is real time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 SiamFC++ 的多层特征模板更新物体跟踪算法
SiamFC++ 只提取第一帧的物体特征作为跟踪模板,在分类分支和回归分支中都只使用最高级别的特征图,这样就不能充分利用两个分支各自的特点。有鉴于此,本文提出了一种基于 SiamFC++ 的物体跟踪算法。该算法利用连体网络的多层特征来更新模板。首先,利用 FPN 从 Backbone 的不同层提取特征图,用于分类分支和回归分支。其次,利用三维卷积更新物体跟踪算法的跟踪模板。接着,提出了基于互信息的模板更新判断条件。最后,使用 AlexNet 作为骨干网,GOT-10K 作为训练集。与 SiamFC++ 相比,我们的算法在 OTB100、VOT2016、VOT2018 和 GOT-10k 数据集上获得了更好的结果,并且跟踪过程是实时的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasip Journal on Image and Video Processing
Eurasip Journal on Image and Video Processing Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
23
审稿时长
6.8 months
期刊介绍: EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.
期刊最新文献
Advanced fine-tuning procedures to enhance DNN robustness in visual coding for machines A novel multiscale cGAN approach for enhanced salient object detection in single haze images Optimization of parameters for image denoising algorithm pertaining to generalized Caputo-Fabrizio fractional operator Utility-based performance evaluation of biometric sample quality measures Beyond the visible: thermal data for facial soft biometric estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1