First-principles and machine learning investigation on A4BX6 halide perovskites

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2023-12-29 DOI:10.1088/1361-651x/ad16ef
Pan Zheng, Yiru Huang, Lei Zhang
{"title":"First-principles and machine learning investigation on A4BX6 halide perovskites","authors":"Pan Zheng, Yiru Huang, Lei Zhang","doi":"10.1088/1361-651x/ad16ef","DOIUrl":null,"url":null,"abstract":"The A<sub>4</sub>BX<sub>6</sub> molecular halide perovskites have received attention owing to their interesting optoelectronic properties at the molecular scale; however, a comprehensive dataset of their atomic structures and electronic properties and associated data-driven investigation are still unavailable now, which makes it difficult for inverse materials design for semiconductor applications (e.g. wide band gap semiconductor). In this manuscript, we employ data-driven methods to predict band gaps of A<sub>4</sub>BX<sub>6</sub> molecular halide perovskites via machine learning. A large virtual design database including 246 904 A<sub>4</sub>BX<sub>6</sub> perovskite samples is predicted via machine learning, based on the model trained using 2740 first-principles results of A<sub>4</sub>BX<sub>6</sub> molecular halide perovskites. In addition, symbolic regression-based machine learning is employed to identify more physically intuitive descriptors based on the starting first-principles dataset of A<sub>4</sub>BX<sub>6</sub> molecular halide perovskites. In addition, different ranking methods are employed to offer a comprehensive feature importance analysis for the halide perovskite materials. This study highlights the efficacy of machine learning-assisted compositional design of A<sub>4</sub>BX<sub>6</sub> perovskites, and the multi-dimensional database established here is valuable for future experimental validation toward perovskite-based wide band gap semiconductor materials.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad16ef","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The A4BX6 molecular halide perovskites have received attention owing to their interesting optoelectronic properties at the molecular scale; however, a comprehensive dataset of their atomic structures and electronic properties and associated data-driven investigation are still unavailable now, which makes it difficult for inverse materials design for semiconductor applications (e.g. wide band gap semiconductor). In this manuscript, we employ data-driven methods to predict band gaps of A4BX6 molecular halide perovskites via machine learning. A large virtual design database including 246 904 A4BX6 perovskite samples is predicted via machine learning, based on the model trained using 2740 first-principles results of A4BX6 molecular halide perovskites. In addition, symbolic regression-based machine learning is employed to identify more physically intuitive descriptors based on the starting first-principles dataset of A4BX6 molecular halide perovskites. In addition, different ranking methods are employed to offer a comprehensive feature importance analysis for the halide perovskite materials. This study highlights the efficacy of machine learning-assisted compositional design of A4BX6 perovskites, and the multi-dimensional database established here is valuable for future experimental validation toward perovskite-based wide band gap semiconductor materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A4BX6 卤化物包晶的第一性原理和机器学习研究
A4BX6 卤化物分子包晶石因其在分子尺度上有趣的光电特性而备受关注;然而,有关其原子结构和电子特性的全面数据集以及相关的数据驱动研究现在仍然不可用,这给半导体应用(如宽带隙半导体)的反向材料设计带来了困难。在本手稿中,我们采用数据驱动方法,通过机器学习预测 A4BX6 分子卤化物包晶石的带隙。基于使用 2740 个 A4BX6 分子卤化物包晶的第一原理结果训练的模型,我们通过机器学习预测了包括 246 904 个 A4BX6 包晶样品在内的大型虚拟设计数据库。此外,还采用了基于符号回归的机器学习方法,根据 A4BX6 卤化分子包晶的起始第一原理数据集识别出更多物理直观描述符。此外,还采用了不同的排序方法,为卤化物透视材料提供全面的特征重要性分析。这项研究凸显了机器学习辅助 A4BX6 包晶石组成设计的功效,而在此建立的多维数据库对未来基于包晶石的宽带隙半导体材料的实验验证具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1