Yanqiu Wang , Ying Zhou , Xinxin Zhang , Mingrui Wang , Tangkang Liu , Jinxing Wei , Guanghui Zhang , Xinlin Hong , Guoliang Liu
{"title":"PdFe Alloy-Fe5C2 interfaces for efficient CO2 hydrogenation to higher alcohols","authors":"Yanqiu Wang , Ying Zhou , Xinxin Zhang , Mingrui Wang , Tangkang Liu , Jinxing Wei , Guanghui Zhang , Xinlin Hong , Guoliang Liu","doi":"10.1016/j.apcatb.2024.123691","DOIUrl":null,"url":null,"abstract":"<div><p>Direct CO<sub>2</sub> hydrogenation to higher alcohols (HA) is a promising route for high-value utilization of waste CO<sub>2</sub>, but developing active and stable catalysts remains a grand challenge. For this reaction, constructing multifunctional interfaces as active sites is required to fulfill controllable C-C coupling of alkyl and CO*/CH<sub>x</sub>O* species. Herein, we report a PdFe catalyst with abundant PdFe alloy-Fe<sub>5</sub>C<sub>2</sub> interfaces via a PdFe alloy induced FeO<sub>x</sub> carbidization process, which can achieve HA yield of 86.5 mg g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> with 26.5% selectivity at 300 ºC, 5 MPa, and 6000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. The accelerated deactivation test unveils the PdFe catalyst exhibits better durability than the widely studied CuFe based catalysts against harsh conditions. Multiple in-situ characterization results unveil a synergetic mechanism for HA synthesis at the PdFe alloy-Fe<sub>5</sub>C<sub>2</sub> interfaces, where PdFe alloy is responsible for CO formation and non-dissociative activation, while Fe<sub>5</sub>C<sub>2</sub> phase promotes CO dissociation and chain propagation.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123691"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092633732400002X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct CO2 hydrogenation to higher alcohols (HA) is a promising route for high-value utilization of waste CO2, but developing active and stable catalysts remains a grand challenge. For this reaction, constructing multifunctional interfaces as active sites is required to fulfill controllable C-C coupling of alkyl and CO*/CHxO* species. Herein, we report a PdFe catalyst with abundant PdFe alloy-Fe5C2 interfaces via a PdFe alloy induced FeOx carbidization process, which can achieve HA yield of 86.5 mg gcat−1 h−1 with 26.5% selectivity at 300 ºC, 5 MPa, and 6000 mL gcat−1 h−1. The accelerated deactivation test unveils the PdFe catalyst exhibits better durability than the widely studied CuFe based catalysts against harsh conditions. Multiple in-situ characterization results unveil a synergetic mechanism for HA synthesis at the PdFe alloy-Fe5C2 interfaces, where PdFe alloy is responsible for CO formation and non-dissociative activation, while Fe5C2 phase promotes CO dissociation and chain propagation.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.