Synthesis and characterization of emulsion fuels –Implications to spray and engine studies

IF 32 1区 工程技术 Q1 ENERGY & FUELS Progress in Energy and Combustion Science Pub Date : 2024-01-03 DOI:10.1016/j.pecs.2023.101133
Sudarshan Gowrishankar , Preetika Rastogi , Anand Krishnasamy , Madivala G. Basavaraj , Niket Kaisare , Indrapal Singh Aidhen
{"title":"Synthesis and characterization of emulsion fuels –Implications to spray and engine studies","authors":"Sudarshan Gowrishankar ,&nbsp;Preetika Rastogi ,&nbsp;Anand Krishnasamy ,&nbsp;Madivala G. Basavaraj ,&nbsp;Niket Kaisare ,&nbsp;Indrapal Singh Aidhen","doi":"10.1016/j.pecs.2023.101133","DOIUrl":null,"url":null,"abstract":"<div><p><span>Conventional diesel combustion is a mixing-limited process that passes through high temperature and fuel-rich zones, leading to oxides of nitrogen (NO</span><sub>x</sub><span>) and particulate matter (PM) formation. Simultaneous reduction of NO</span><sub>x</sub> and PM is difficult due to NO<sub>x</sub><span>-PM trade-off. As alternative fuels, emulsions of water-in-diesel offer several advantages, including a simultaneous reduction in NO</span><sub>x</sub><span><span> and PM formation. There are, however, disparities in the reported engine performance and emission<span><span> characteristics, as they appear to depend on the constituents and microstructure of the emulsion fuel used and engine conditions. Studies on engine performance and exhaust emissions were often carried out without adequate characterization of the emulsions. Therefore, the paucity of cohesive data can be circumvented by standardizing the protocols for emulsion fuels, tailoring their morphology, structure, and characterization, and optimizing engine conditions. This review article recapitulates the salient features of emulsion fuels, from their synthesis, microstructure, characterization, and macroscopic spray characteristics to performance and emissions in </span>diesel engines<span>. A critical analysis of the current state of knowledge is also presented, emphasising the tunability of droplet size and characterization </span></span></span>of emulsion stability. The review concludes by suggesting the path forward to utilizing emulsion fuels.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"101 ","pages":"Article 101133"},"PeriodicalIF":32.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128523000631","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional diesel combustion is a mixing-limited process that passes through high temperature and fuel-rich zones, leading to oxides of nitrogen (NOx) and particulate matter (PM) formation. Simultaneous reduction of NOx and PM is difficult due to NOx-PM trade-off. As alternative fuels, emulsions of water-in-diesel offer several advantages, including a simultaneous reduction in NOx and PM formation. There are, however, disparities in the reported engine performance and emission characteristics, as they appear to depend on the constituents and microstructure of the emulsion fuel used and engine conditions. Studies on engine performance and exhaust emissions were often carried out without adequate characterization of the emulsions. Therefore, the paucity of cohesive data can be circumvented by standardizing the protocols for emulsion fuels, tailoring their morphology, structure, and characterization, and optimizing engine conditions. This review article recapitulates the salient features of emulsion fuels, from their synthesis, microstructure, characterization, and macroscopic spray characteristics to performance and emissions in diesel engines. A critical analysis of the current state of knowledge is also presented, emphasising the tunability of droplet size and characterization of emulsion stability. The review concludes by suggesting the path forward to utilizing emulsion fuels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳化燃料的合成与表征 - 对喷雾和发动机研究的启示
传统的柴油燃烧是一个混合受限的过程,要经过高温和燃料丰富的区域,从而形成氮氧化物(NOx)和颗粒物(PM)。由于氮氧化物和可吸入颗粒物之间存在权衡,因此很难同时减少氮氧化物和可吸入颗粒物。作为替代燃料,水包柴油乳化液具有多项优势,包括可同时减少氮氧化物和可吸入颗粒物的形成。然而,报告的发动机性能和排放特性存在差异,因为它们似乎取决于所用乳化燃料的成分和微观结构以及发动机条件。对发动机性能和废气排放的研究往往是在没有充分描述乳化液特性的情况下进行的。因此,可以通过规范乳化燃料的使用规程,调整其形态、结构和表征,以及优化发动机条件,来避免缺乏连贯数据的问题。这篇综述文章概述了乳化燃料的突出特点,从其合成、微观结构、表征、宏观喷雾特性到柴油发动机的性能和排放。文章还对当前的知识状况进行了批判性分析,强调了液滴大小的可调性和乳化稳定性的表征。综述最后提出了利用乳化燃料的前进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
期刊最新文献
Turbulent combustion modeling for internal combustion engine CFD: A review Modeling and optimization of anaerobic digestion technology: Current status and future outlook Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects A comprehensive review of liquid fuel droplet evaporation and combustion behavior with carbon-based nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1