A deep learning model for predicting the number of stores and average sales in commercial district

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-01-04 DOI:10.1016/j.datak.2024.102277
Suan Lee , Sangkeun Ko , Arousha Haghighian Roudsari , Wookey Lee
{"title":"A deep learning model for predicting the number of stores and average sales in commercial district","authors":"Suan Lee ,&nbsp;Sangkeun Ko ,&nbsp;Arousha Haghighian Roudsari ,&nbsp;Wookey Lee","doi":"10.1016/j.datak.2024.102277","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a plan for preparing for changes in the business environment by analyzing and predicting business district data in Seoul. The COVID-19 pandemic and economic crisis caused by inflation have led to an increase in store closures and a decrease in sales, which has had a significant impact on commercial districts. The number of stores and sales are critical factors that directly affect the business environment and can help prepare for changes. This study conducted correlation analysis to extract factors related to the commercial district’s environment in Seoul and estimated the number of stores and sales based on these factors. Using the Kendaltau correlation coefficient, the study found that existing population and working population were the most influential factors. Linear regression, tensor decomposition, Factorization Machine, and deep neural network models were used to estimate the number of stores and sales, with the deep neural network model showing the best performance in RMSE and evaluation indicators. This study also predicted the number of stores and sales of the service industry in a specific area using the population prediction results of the neural prophet model. The study’s findings can help identify commercial district information and predict the number of stores and sales based on location, industry, and influencing factors, contributing to the revitalization of commercial districts.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"150 ","pages":"Article 102277"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000016/pdfft?md5=399d90f81e8f5fbe38aeaa5e86a26560&pid=1-s2.0-S0169023X24000016-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000016","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a plan for preparing for changes in the business environment by analyzing and predicting business district data in Seoul. The COVID-19 pandemic and economic crisis caused by inflation have led to an increase in store closures and a decrease in sales, which has had a significant impact on commercial districts. The number of stores and sales are critical factors that directly affect the business environment and can help prepare for changes. This study conducted correlation analysis to extract factors related to the commercial district’s environment in Seoul and estimated the number of stores and sales based on these factors. Using the Kendaltau correlation coefficient, the study found that existing population and working population were the most influential factors. Linear regression, tensor decomposition, Factorization Machine, and deep neural network models were used to estimate the number of stores and sales, with the deep neural network model showing the best performance in RMSE and evaluation indicators. This study also predicted the number of stores and sales of the service industry in a specific area using the population prediction results of the neural prophet model. The study’s findings can help identify commercial district information and predict the number of stores and sales based on location, industry, and influencing factors, contributing to the revitalization of commercial districts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测商业区商店数量和平均销售额的深度学习模型
本文通过对首尔商业区数据的分析和预测,提出了一项为商业环境变化做准备的计划。COVID-19 大流行和通货膨胀引发的经济危机导致商店关闭数量增加和销售额下降,这对商业区产生了重大影响。商店数量和销售额是直接影响商业环境的关键因素,有助于为变化做好准备。本研究通过相关分析提取了与首尔商业区环境相关的因素,并根据这些因素估算了商店数量和销售额。利用 Kendaltau 相关系数,研究发现现有人口和工作人口是影响最大的因素。研究采用了线性回归、张量分解、因果化机和深度神经网络模型来估算商店数量和销售额,其中深度神经网络模型在均方根误差和评价指标方面表现最佳。本研究还利用神经先知模型的人口预测结果预测了特定地区服务业的门店数量和销售额。研究结果有助于识别商业区信息,并根据区位、行业和影响因素预测商店数量和销售额,从而促进商业区的振兴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Goal modelling in aeronautics: Practical applications for aircraft and manufacturing designs Ethical reasoning methods for ICT: What they are and when to use them SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph NoSQL document data migration strategy in the context of schema evolution VarClaMM: A reference meta-model to understand DNA variant classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1