{"title":"Prediction of protein structure and AI","authors":"Shiho Ohno, Noriyoshi Manabe, Yoshiki Yamaguchi","doi":"10.1038/s10038-023-01215-4","DOIUrl":null,"url":null,"abstract":"AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-function relationships from protein 3D structure models and can serve as a template or a reference for experimental structural analysis including X-ray crystallography, NMR and cryo-EM analysis. Its use is expanding among researchers, not only in structural biology but also in other research fields. Researchers are currently exploring the full potential of AlphaFold-generated protein models. Predicting disease severity caused by missense mutations is one such application. This article provides an overview of the 3D structural modeling of AlphaFold based on deep learning techniques and highlights the challenges in predicting the pathogenicity of missense mutations.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 10","pages":"477-480"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-023-01215-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-function relationships from protein 3D structure models and can serve as a template or a reference for experimental structural analysis including X-ray crystallography, NMR and cryo-EM analysis. Its use is expanding among researchers, not only in structural biology but also in other research fields. Researchers are currently exploring the full potential of AlphaFold-generated protein models. Predicting disease severity caused by missense mutations is one such application. This article provides an overview of the 3D structural modeling of AlphaFold based on deep learning techniques and highlights the challenges in predicting the pathogenicity of missense mutations.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.