Cavity-enhanced photoacoustic dual-comb spectroscopy.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy Light, science & applications Pub Date : 2024-01-05 DOI:10.1038/s41377-023-01353-6
Zhen Wang, Qinxue Nie, Haojia Sun, Qiang Wang, Simone Borri, Paolo De Natale, Wei Ren
{"title":"Cavity-enhanced photoacoustic dual-comb spectroscopy.","authors":"Zhen Wang, Qinxue Nie, Haojia Sun, Qiang Wang, Simone Borri, Paolo De Natale, Wei Ren","doi":"10.1038/s41377-023-01353-6","DOIUrl":null,"url":null,"abstract":"<p><p>Photoacoustic dual-comb spectroscopy (DCS), converting spectral information in the optical frequency domain to the audio frequency domain via multi-heterodyne beating, enables background-free spectral measurements with high resolution and broad bandwidth. However, the detection sensitivity remains limited due to the low power of individual comb lines and the lack of broadband acoustic resonators. Here, we develop cavity-enhanced photoacoustic DCS, which overcomes these limitations by using a high-finesse optical cavity for the power amplification of dual-frequency combs and a broadband acoustic resonator with a flat-top frequency response. We demonstrate high-resolution spectroscopic measurements of trace amounts of C<sub>2</sub>H<sub>2</sub>, NH<sub>3</sub> and CO in the entire telecommunications C-band. The method shows a minimum detection limit of 0.6 ppb C<sub>2</sub>H<sub>2</sub> at the measurement time of 100 s, corresponding to the noise equivalent absorption coefficient of 7 × 10<sup>-10 </sup>cm<sup>-1</sup>. The proposed cavity-enhanced photoacoustic DCS may open new avenues for ultrasensitive, high-resolution, and multi-species gas detection with widespread applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"11"},"PeriodicalIF":19.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-023-01353-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Photoacoustic dual-comb spectroscopy (DCS), converting spectral information in the optical frequency domain to the audio frequency domain via multi-heterodyne beating, enables background-free spectral measurements with high resolution and broad bandwidth. However, the detection sensitivity remains limited due to the low power of individual comb lines and the lack of broadband acoustic resonators. Here, we develop cavity-enhanced photoacoustic DCS, which overcomes these limitations by using a high-finesse optical cavity for the power amplification of dual-frequency combs and a broadband acoustic resonator with a flat-top frequency response. We demonstrate high-resolution spectroscopic measurements of trace amounts of C2H2, NH3 and CO in the entire telecommunications C-band. The method shows a minimum detection limit of 0.6 ppb C2H2 at the measurement time of 100 s, corresponding to the noise equivalent absorption coefficient of 7 × 10-10 cm-1. The proposed cavity-enhanced photoacoustic DCS may open new avenues for ultrasensitive, high-resolution, and multi-species gas detection with widespread applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腔体增强型光声双梳光谱学。
光声双梳状光谱(DCS)通过多外差跳动将光学频域的光谱信息转换到音频频域,从而实现了高分辨率和宽带宽的无背景光谱测量。然而,由于单个梳状线的功率较低,且缺乏宽带声共振,因此探测灵敏度仍然有限。在此,我们开发了空腔增强型光声 DCS,通过使用高精细度光腔对双频梳状线进行功率放大,以及使用具有平顶频率响应的宽带声学谐振器,克服了这些限制。我们展示了在整个电信 C 波段对痕量 C2H2、NH3 和 CO 的高分辨率光谱测量。测量时间为 100 秒时,该方法的最低检测限为 0.6 ppb C2H2,对应的噪声等效吸收系数为 7 × 10-10 cm-1。所提出的空腔增强型光声 DCS 可为超灵敏、高分辨率和多种类气体检测开辟新的途径,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
期刊最新文献
Research progress on aero-optical effects of hypersonic optical window with film cooling. Highly-efficient (>70%) and Wide-spectral (400-1700 nm) sub-micron-thick InGaAs photodiodes for future high-resolution image sensors. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1