Large Language Models in Ophthalmology: Potential and Pitfalls.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-01 Epub Date: 2024-01-05 DOI:10.1080/08820538.2023.2300808
Antonio Yaghy, Maria Yaghy, Jerry A Shields, Carol L Shields
{"title":"Large Language Models in Ophthalmology: Potential and Pitfalls.","authors":"Antonio Yaghy, Maria Yaghy, Jerry A Shields, Carol L Shields","doi":"10.1080/08820538.2023.2300808","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) show great promise in assisting clinicians in general, and ophthalmology in particular, through knowledge synthesis, decision support, accelerating research, enhancing education, and improving patient interactions. Specifically, LLMs can rapidly summarize the latest literature to keep clinicians up-to-date. They can also analyze patient data to highlight crucial insights and recommend appropriate tests or referrals. LLMs can automate tedious research tasks like data cleaning and literature reviews. As AI tutors, LLMs can fill knowledge gaps and assess competency in trainees. As chatbots, they can provide empathetic, personalized responses to patient inquiries and improve satisfaction. The visual capabilities of LLMs like GPT-4 allow assisting the visually impaired by describing environments. However, there are significant ethical, technical, and legal challenges around the use of LLMs that should be addressed regarding privacy, fairness, robustness, attribution, and regulation. Ongoing oversight and refinement of models is critical to realize benefits while minimizing risks and upholding responsible AI principles. If carefully implemented, LLMs hold immense potential to push the boundaries of care, discovery, and quality of life for ophthalmology patients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820538.2023.2300808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) show great promise in assisting clinicians in general, and ophthalmology in particular, through knowledge synthesis, decision support, accelerating research, enhancing education, and improving patient interactions. Specifically, LLMs can rapidly summarize the latest literature to keep clinicians up-to-date. They can also analyze patient data to highlight crucial insights and recommend appropriate tests or referrals. LLMs can automate tedious research tasks like data cleaning and literature reviews. As AI tutors, LLMs can fill knowledge gaps and assess competency in trainees. As chatbots, they can provide empathetic, personalized responses to patient inquiries and improve satisfaction. The visual capabilities of LLMs like GPT-4 allow assisting the visually impaired by describing environments. However, there are significant ethical, technical, and legal challenges around the use of LLMs that should be addressed regarding privacy, fairness, robustness, attribution, and regulation. Ongoing oversight and refinement of models is critical to realize benefits while minimizing risks and upholding responsible AI principles. If carefully implemented, LLMs hold immense potential to push the boundaries of care, discovery, and quality of life for ophthalmology patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
眼科学中的大型语言模型:潜力与陷阱。
大型语言模型(LLMs)通过知识综合、决策支持、加速研究、加强教育和改善与患者的互动,在协助临床医生,尤其是眼科医生方面大有可为。具体来说,LLM 可以快速总结最新文献,让临床医生了解最新情况。它们还可以分析患者数据,突出重要见解,并建议适当的检查或转诊。LLM 可以自动完成数据清理和文献综述等繁琐的研究任务。作为人工智能导师,LLM 可以填补知识空白并评估学员的能力。作为聊天机器人,它们可以对患者的咨询做出富有同情心的个性化回复,并提高满意度。GPT-4 等 LLM 的视觉功能可以通过描述环境来帮助视障人士。然而,在使用 LLMs 的过程中,还存在着道德、技术和法律方面的重大挑战,需要在隐私、公平性、稳健性、归属和监管等方面加以解决。对模型的持续监督和改进对于在实现效益的同时最大限度地降低风险和坚持负责任的人工智能原则至关重要。如果认真实施,LLMs 在推动眼科患者的护理、发现和生活质量方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1