M. Congro, F. L. G. Pereira, L. M. S. Souza, D. Roehl
{"title":"A Hybrid Parameter Homogenization Workflow for Assessing the Mechanical Behavior of a Steel Fiber-Reinforced Concrete","authors":"M. Congro, F. L. G. Pereira, L. M. S. Souza, D. Roehl","doi":"10.1007/s11029-023-10163-1","DOIUrl":null,"url":null,"abstract":"<p>A novel generic workflow to predict homogenized material parameters of tensile behavior of a steel fiber-reinforced concrete (SFRC) using artificial neural networks (ANNs) was proposed. The neural network estimated the homogenized parameters of composite materials linked to finite-element (FE) models. An advantage of this approach is its flexibility in obtaining model parameters, which often have no physical interpretation. Moreover, the joint application of ANNs to estimate the model parameters and FE simulations to obtain the global mechanical behavior of SFRC is an innovation. An experimental database was constructed from the tests available in the literature and provided the ANN input data: the water-cement ratio, the fiber volume fraction, and the diameter and length of steel fibers. The outputs were Young’s modulus, the tensile strength, and the fracture energy of the composite. Three different networks were trained for each output dataset. The ANN configuration consisted of an input layer with four nodes and an output layer with one node. Blind tests with five experimental test sets checked the solution accuracy, presenting relative errors lower than 10%. Finally, a FE model of a direct tensile test was built, adopting the parameters obtained through the workflow. The load–displacement curve of the numerical solution showed a good agreement with the experimental curve, and peak–load errors were smaller than 5%.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-023-10163-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
A novel generic workflow to predict homogenized material parameters of tensile behavior of a steel fiber-reinforced concrete (SFRC) using artificial neural networks (ANNs) was proposed. The neural network estimated the homogenized parameters of composite materials linked to finite-element (FE) models. An advantage of this approach is its flexibility in obtaining model parameters, which often have no physical interpretation. Moreover, the joint application of ANNs to estimate the model parameters and FE simulations to obtain the global mechanical behavior of SFRC is an innovation. An experimental database was constructed from the tests available in the literature and provided the ANN input data: the water-cement ratio, the fiber volume fraction, and the diameter and length of steel fibers. The outputs were Young’s modulus, the tensile strength, and the fracture energy of the composite. Three different networks were trained for each output dataset. The ANN configuration consisted of an input layer with four nodes and an output layer with one node. Blind tests with five experimental test sets checked the solution accuracy, presenting relative errors lower than 10%. Finally, a FE model of a direct tensile test was built, adopting the parameters obtained through the workflow. The load–displacement curve of the numerical solution showed a good agreement with the experimental curve, and peak–load errors were smaller than 5%.
提出了一种新的通用工作流程,利用人工神经网络(ANN)预测钢纤维增强混凝土(SFRC)拉伸行为的均质材料参数。神经网络估算了与有限元(FE)模型相关联的复合材料的均质化参数。这种方法的优点是可以灵活地获取模型参数,而这些参数往往没有物理解释。此外,联合应用 ANN 估算模型参数和 FE 模拟来获得 SFRC 的整体力学行为也是一种创新。根据文献中的测试结果构建了一个实验数据库,并提供了 ANN 输入数据:水灰比、纤维体积分数以及钢纤维的直径和长度。输出为复合材料的杨氏模量、拉伸强度和断裂能。每个输出数据集都训练了三个不同的网络。ANN 配置包括一个有四个节点的输入层和一个有一个节点的输出层。利用五个实验测试集进行的盲测检验了解决方案的准确性,结果显示相对误差低于 10%。最后,采用工作流程中获得的参数,建立了直接拉伸试验的有限元模型。数值解法的载荷-位移曲线与实验曲线显示出良好的一致性,峰值载荷误差小于 5%。
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.