Hannah J Goudsward, Victor Ruiz-Velasco, Salvatore L Stella, Lisa B Willing, Gregory M Holmes
{"title":"Coexpressed <i>δ</i>-, <i>μ</i>-, and <i>κ</i>-Opioid Receptors Modulate Voltage-Gated Ca<sup>2+</sup> Channels in Gastric-Projecting Vagal Afferent Neurons.","authors":"Hannah J Goudsward, Victor Ruiz-Velasco, Salvatore L Stella, Lisa B Willing, Gregory M Holmes","doi":"10.1124/molpharm.123.000774","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid analgesics are frequently associated with gastrointestinal side effects, including constipation, nausea, dysphagia, and reduced gastric motility. Though it has been shown that stimulation of opioid receptors expressed in enteric motor neurons contributes to opioid-induced constipation, it remains unclear whether activation of opioid receptors in gastric-projecting nodose ganglia neurons contributes to the reduction in gastric motility and emptying associated with opioid use. In the present study, whole-cell patch-clamp recordings were performed to determine the mechanism underlying opioid receptor-mediated modulation of Ca<sup>2+</sup> currents in acutely isolated gastric vagal afferent neurons. Our results demonstrate that Ca<sub>V</sub>2.2 channels provide the majority (71% ± 16%) of Ca<sup>2+</sup> currents in gastric vagal afferent neurons. Furthermore, we found that application of oxycodone, U-50488, or deltorphin II on gastric nodose ganglia neurons inhibited Ca<sup>2+</sup> currents through a voltage-dependent mechanism by coupling to the G<i>α</i> <sub>i/o</sub> family of heterotrimeric G-proteins. Because previous studies have demonstrated that the nodose ganglia expresses low levels of <i>δ</i>-opioid receptors, we also determined the deltorphin II concentration-response relationship and assessed deltorphin-mediated Ca<sup>2+</sup> current inhibition following exposure to the <i>δ</i>-opioid receptor antagonist ICI 174,864 (0.3 µM). The peak mean Ca<sup>2+</sup> current inhibition following deltorphin II application was 47% ± 24% (EC<sub>50</sub> = 302.6 nM), and exposure to ICI 174,864 blocked deltorphin II-mediated Ca<sup>2+</sup> current inhibition (4% ± 4% versus 37% ± 20%). Together, our results suggest that analgesics targeting any opioid receptor subtype can modulate gastric vagal circuits. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric nodose ganglia neurons, agonists targeting all three classical opioid receptor subtypes (<i>μ</i>, <i>δ</i>, and <i>κ</i>) inhibit voltage-gated Ca<sup>2+</sup> channels in a voltage-dependent mechanism by coupling to Gα<sub>i/o</sub>. These findings suggest that analgesics targeting any opioid receptor subtype would modulate gastric vagal circuits responsible for regulating gastric reflexes.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":" ","pages":"250-259"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.123.000774","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Opioid analgesics are frequently associated with gastrointestinal side effects, including constipation, nausea, dysphagia, and reduced gastric motility. Though it has been shown that stimulation of opioid receptors expressed in enteric motor neurons contributes to opioid-induced constipation, it remains unclear whether activation of opioid receptors in gastric-projecting nodose ganglia neurons contributes to the reduction in gastric motility and emptying associated with opioid use. In the present study, whole-cell patch-clamp recordings were performed to determine the mechanism underlying opioid receptor-mediated modulation of Ca2+ currents in acutely isolated gastric vagal afferent neurons. Our results demonstrate that CaV2.2 channels provide the majority (71% ± 16%) of Ca2+ currents in gastric vagal afferent neurons. Furthermore, we found that application of oxycodone, U-50488, or deltorphin II on gastric nodose ganglia neurons inhibited Ca2+ currents through a voltage-dependent mechanism by coupling to the Gαi/o family of heterotrimeric G-proteins. Because previous studies have demonstrated that the nodose ganglia expresses low levels of δ-opioid receptors, we also determined the deltorphin II concentration-response relationship and assessed deltorphin-mediated Ca2+ current inhibition following exposure to the δ-opioid receptor antagonist ICI 174,864 (0.3 µM). The peak mean Ca2+ current inhibition following deltorphin II application was 47% ± 24% (EC50 = 302.6 nM), and exposure to ICI 174,864 blocked deltorphin II-mediated Ca2+ current inhibition (4% ± 4% versus 37% ± 20%). Together, our results suggest that analgesics targeting any opioid receptor subtype can modulate gastric vagal circuits. SIGNIFICANCE STATEMENT: This study demonstrated that in gastric nodose ganglia neurons, agonists targeting all three classical opioid receptor subtypes (μ, δ, and κ) inhibit voltage-gated Ca2+ channels in a voltage-dependent mechanism by coupling to Gαi/o. These findings suggest that analgesics targeting any opioid receptor subtype would modulate gastric vagal circuits responsible for regulating gastric reflexes.
期刊介绍:
Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include:
Molecular Signaling / Mechanism of Drug Action
Chemical Biology / Drug Discovery
Structure of Drug-Receptor Complex
Systems Analysis of Drug Action
Drug Transport / Metabolism