Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-03 DOI:10.1016/j.slasd.2024.01.001
Mujahed I. Mustafa , Ahmed Mohammed
{"title":"Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases","authors":"Mujahed I. Mustafa ,&nbsp;Ahmed Mohammed","doi":"10.1016/j.slasd.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000017/pdfft?md5=93aed5a9bb73b5e08c82c3d4ec4e0e52&pid=1-s2.0-S2472555224000017-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用噬菌体展示技术开发重组抗体,中和病毒性传染病。
利用噬菌体展示技术开发的重组抗体为防治病毒性传染病提供了一种前景广阔的方法。通过特异性靶向病毒表面的抗原,这些抗体有可能减轻感染的严重程度,甚至完全预防感染。随着新病毒和毒性更强的病毒株的出现,开发创新的抗病毒方法至关重要。事实证明,噬菌体展示技术能成功产生针对特定病毒抗原的重组抗体,从而为对抗病毒感染提供了强有力的工具。在这篇微型综述文章中,我们研究了利用噬菌体展示技术开发这些抗体的情况,并讨论了开发新型病毒性传染病治疗方法的相关挑战和机遇。此外,我们还概述了噬菌体展示技术。随着这些方法的不断发展和改进,基于噬菌体展示和多肽展示系统的新型复杂工具不断涌现,为在不久的将来解决与病毒性传染病有关的科学、医学和技术问题提供了令人振奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1