{"title":"Data Augmentation for Low-Level Vision: CutBlur and Mixture-of-Augmentation","authors":"Namhyuk Ahn, Jaejun Yoo, Kyung-Ah Sohn","doi":"10.1007/s11263-023-01970-z","DOIUrl":null,"url":null,"abstract":"<p>Data augmentation (DA) is an effective way to improve the performance of deep networks. Unfortunately, current methods are mostly developed for high-level vision tasks (eg, image classification) and few are studied for low-level (eg, image restoration). In this paper, we provide a comprehensive analysis of the existing DAs in the frequency domain. We find that the methods that largely manipulate the spatial information can hinder the image restoration process and hurt the performance. Based on our analyses, we propose CutBlur and mixture-of-augmentation (MoA). CutBlur cuts a low-quality patch and pastes it to the corresponding high-quality image region, or vice versa. The key intuition is to provide enough DA effect while keeping the pixel distribution intact. This characteristic of CutBlur enables a model to learn not only “how” but also “where” to reconstruct an image. Eventually, the model understands “how much” to restore given pixels, which allows it to generalize better to unseen data distributions. We further improve the restoration performance by MoA that incorporates the curated list of DAs. We demonstrate the effectiveness of our methods by conducting extensive experiments on several low-level vision tasks on both single or a mixture of distortion tasks. Our results show that CutBlur and MoA consistently and significantly improve the performance especially when the model size is big and the data is collected under real-world environments. Our code is available at https://github.com/clovaai/cutblur.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-023-01970-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Data augmentation (DA) is an effective way to improve the performance of deep networks. Unfortunately, current methods are mostly developed for high-level vision tasks (eg, image classification) and few are studied for low-level (eg, image restoration). In this paper, we provide a comprehensive analysis of the existing DAs in the frequency domain. We find that the methods that largely manipulate the spatial information can hinder the image restoration process and hurt the performance. Based on our analyses, we propose CutBlur and mixture-of-augmentation (MoA). CutBlur cuts a low-quality patch and pastes it to the corresponding high-quality image region, or vice versa. The key intuition is to provide enough DA effect while keeping the pixel distribution intact. This characteristic of CutBlur enables a model to learn not only “how” but also “where” to reconstruct an image. Eventually, the model understands “how much” to restore given pixels, which allows it to generalize better to unseen data distributions. We further improve the restoration performance by MoA that incorporates the curated list of DAs. We demonstrate the effectiveness of our methods by conducting extensive experiments on several low-level vision tasks on both single or a mixture of distortion tasks. Our results show that CutBlur and MoA consistently and significantly improve the performance especially when the model size is big and the data is collected under real-world environments. Our code is available at https://github.com/clovaai/cutblur.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.