{"title":"Development of Soil-Suppressed Impervious Surface Area Index for Automatic Urban Mapping","authors":"Akib Javed, Zhenfeng Shao, Iffat Ara, Muhammad Nasar Ahmad, Enamul Huq, Nayyer Saleem, Fazlul Karim","doi":"10.14358/pers.23-00043r2","DOIUrl":null,"url":null,"abstract":"Expanding urban impervious surface area (ISA) mapping is crucial to sustainable development, urban planning, and environmental studies. Multispectral ISA mapping is challenging because of the mixed-pixel problems with bare soil. This study presents a novel approach using spectral and temporal information to develop a Soil-Suppressed Impervious Surface Area Index (SISAI) using the Landsat Operational Land Imager (OLI) data set, which reduces the soil but enhances the ISA signature. This study mapped the top 12 populated megacities using SISAI and achieved an over-all accuracy of 0.87 with an F1-score of 0.85. It also achieved a higher Spatial Dissimilarity Index between the ISA and bare soil. However, it is limited by bare gray soil and shadows of clouds and hills. SISAI encourages urban dynamics and inter-urban compari- son studies owing to its automatic and unsupervised methodology.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"14 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00043r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Expanding urban impervious surface area (ISA) mapping is crucial to sustainable development, urban planning, and environmental studies. Multispectral ISA mapping is challenging because of the mixed-pixel problems with bare soil. This study presents a novel approach using spectral and temporal information to develop a Soil-Suppressed Impervious Surface Area Index (SISAI) using the Landsat Operational Land Imager (OLI) data set, which reduces the soil but enhances the ISA signature. This study mapped the top 12 populated megacities using SISAI and achieved an over-all accuracy of 0.87 with an F1-score of 0.85. It also achieved a higher Spatial Dissimilarity Index between the ISA and bare soil. However, it is limited by bare gray soil and shadows of clouds and hills. SISAI encourages urban dynamics and inter-urban compari- son studies owing to its automatic and unsupervised methodology.