Classification of Breast Cancer using Ensemble Filter Feature Selection with Triplet Attention Based Efficient Net Classifier

Madhukar Bangalore Nagaraj, Bharathi Shivanandamurthy Hiremath, Ashwin Matta Polnaya
{"title":"Classification of Breast Cancer using Ensemble Filter Feature Selection with Triplet Attention Based Efficient Net Classifier","authors":"Madhukar Bangalore Nagaraj, Bharathi Shivanandamurthy Hiremath, Ashwin Matta Polnaya","doi":"10.34028/iajit/21/1/2","DOIUrl":null,"url":null,"abstract":"In medical imaging, the effective detection and classification of Breast Cancer (BC) is a current research important task because of the still existing difficulty to distinguish abnormalities from normal breast tissues due to their subtle appearance and ambiguous margins and distinguish abnormalities from the normal breast. Moreover, BC detection based on an automated detection model is needed, because manual diagnosis faces problems due to cost and shortage of skilled manpower, and also takes a very long time. Using deep learning and ensemble feature selection techniques, in this paper, a novel framework is introduced for classifying BC from histopathology images. The five primary steps of the suggested framework are as follows: 1) to make the largest original dataset and then deep learning model with data augmentation to improve the learning. 2) The best features are selected by an Ensemble Filter Feature selection Method (EFFM) which combines the best feature subsets to produce the final feature subsets. 3) Then the pruned Convolution Neural Network (CNN) model is utilized to extract the optimal features. 4) Finally, the classification is done through the Triplet Attention based Efficient Network (TAENet) classifier. The suggested model produces a 98% accuracy rate after being trained and tested on two different histopathology imaging datasets including images from four different data cohorts. Subsequently, the suggested strategy outperforms the conventional ones since the ensemble filter habitually acquires the best features, and experimental results demonstrate the importance of the proposed approach","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"46 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/21/1/2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In medical imaging, the effective detection and classification of Breast Cancer (BC) is a current research important task because of the still existing difficulty to distinguish abnormalities from normal breast tissues due to their subtle appearance and ambiguous margins and distinguish abnormalities from the normal breast. Moreover, BC detection based on an automated detection model is needed, because manual diagnosis faces problems due to cost and shortage of skilled manpower, and also takes a very long time. Using deep learning and ensemble feature selection techniques, in this paper, a novel framework is introduced for classifying BC from histopathology images. The five primary steps of the suggested framework are as follows: 1) to make the largest original dataset and then deep learning model with data augmentation to improve the learning. 2) The best features are selected by an Ensemble Filter Feature selection Method (EFFM) which combines the best feature subsets to produce the final feature subsets. 3) Then the pruned Convolution Neural Network (CNN) model is utilized to extract the optimal features. 4) Finally, the classification is done through the Triplet Attention based Efficient Network (TAENet) classifier. The suggested model produces a 98% accuracy rate after being trained and tested on two different histopathology imaging datasets including images from four different data cohorts. Subsequently, the suggested strategy outperforms the conventional ones since the ensemble filter habitually acquires the best features, and experimental results demonstrate the importance of the proposed approach
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于三重注意的高效网络分类器的集合过滤器特征选择进行乳腺癌分类
在医学影像领域,乳腺癌(BC)的有效检测和分类是当前研究的一项重要任务,因为异常乳腺组织的外观细微,边缘模糊不清,将异常乳腺组织与正常乳腺组织区分开来仍然存在困难。此外,由于人工诊断面临成本高、技术人才短缺等问题,而且耗时很长,因此需要基于自动检测模型的乳腺癌检测。本文利用深度学习和集合特征选择技术,介绍了一种从组织病理学图像中对 BC 进行分类的新型框架。建议框架的五个主要步骤如下:1) 制作最大的原始数据集,然后通过数据增强的深度学习模型来提高学习效果。2)通过集合过滤特征选择法(EFFM)选出最佳特征,该方法将最佳特征子集结合起来,产生最终特征子集。3) 然后利用剪枝卷积神经网络(CNN)模型提取最佳特征。4) 最后,通过基于三重注意的高效网络(TAENet)分类器进行分类。建议的模型在两个不同的组织病理学成像数据集(包括来自四个不同数据队列的图像)上经过训练和测试后,准确率达到 98%。随后,由于集合滤波器习惯性地获取最佳特征,因此建议的策略优于传统策略,实验结果证明了建议方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples* Scrupulous SCGAN Framework for Recognition of Restored Images with Caffe based PCA Filtration Fuzzy Heuristics for Detecting and Preventing Black Hole Attack XAI-PDF: A Robust Framework for Malicious PDF Detection Leveraging SHAP-Based Feature Engineering Healthcare Data Security in Cloud Storage Using Light Weight Symmetric Key Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1