Regulators of clonal hematopoiesis and physiological consequences of this condition

E. Park, Megan A. Evans, Kenneth Walsh
{"title":"Regulators of clonal hematopoiesis and physiological consequences of this condition","authors":"E. Park, Megan A. Evans, Kenneth Walsh","doi":"10.20517/jca.2023.39","DOIUrl":null,"url":null,"abstract":"Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in “driver” genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in “driver” genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克隆造血的调节因子及其生理后果
克隆性造血(CH)是造血干细胞体细胞突变导致的一种普遍情况。当这些突变发生在 "驱动 "基因中时,有可能给受影响的细胞带来适应优势,导致克隆扩增。虽然大多数突变细胞的克隆扩增通常被认为是无症状的,因为它们不会影响整体血细胞数量,但CH携带者面临着全因死亡和与年龄相关疾病的长期风险,包括心血管疾病和血液恶性肿瘤。虽然大量研究都集中在了解 CH 与这些疾病之间的关系上,但较少关注导致驱动基因克隆扩增的调控因素。本综述将重点关注环境压力因素和遗传风险因素在 CH 发展过程中的关联。更好地了解这些压力因素是如何影响 CH 发育的,将有助于进行机理研究,并有可能找到新的治疗途径来治疗这种疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. Targeting vascular senescence in cardiovascular disease with aging. The role of brown adipose tissue in mediating healthful longevity. From vitality to vulnerability: the impact of oxygen on cardiac function and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1