S. Samuel, A. Wicaksono, W. A. Kurniawan, E. S. Hadi, T. Tuswan, A. Trimulyono, M. Muryadin
{"title":"Investigation of An Inverted Bow on Frigate Hull Resistance","authors":"S. Samuel, A. Wicaksono, W. A. Kurniawan, E. S. Hadi, T. Tuswan, A. Trimulyono, M. Muryadin","doi":"10.47176/jafm.17.1.2122","DOIUrl":null,"url":null,"abstract":"This study discusses the inverted bow design on the combatant hull form. Changes in the shape of the stem angle and flare bow are used as analytical parameters to investigate the ship's performance. Ship resistance and motion will be predicted using the Computational Fluid Dynamics (CFD) approach using the Reynolds Averaged Navier Stokes (RANS) equation and the k-ε turbulence model. The volume of fluid (VOF) method is applied to simulate the change in the free surface between water and air using an overset mesh technique. The ship's movement is limited to sinkage and trim motions, so the movement's accuracy can be predicted. The results revealed that the inverted bow reduced the total resistance by 6.30%, whereas the trim and sinkage showed no significant changes. The breakdown of the reduction ratio showed that friction resistance components were reduced by 10.62%, wave resistance by 44.05%, and viscous-pressure resistance by 45.33%. This highlights the effectiveness of an inverted bow in optimizing wave and viscous pressure, enhancing overall ship performance.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"77 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.1.2122","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study discusses the inverted bow design on the combatant hull form. Changes in the shape of the stem angle and flare bow are used as analytical parameters to investigate the ship's performance. Ship resistance and motion will be predicted using the Computational Fluid Dynamics (CFD) approach using the Reynolds Averaged Navier Stokes (RANS) equation and the k-ε turbulence model. The volume of fluid (VOF) method is applied to simulate the change in the free surface between water and air using an overset mesh technique. The ship's movement is limited to sinkage and trim motions, so the movement's accuracy can be predicted. The results revealed that the inverted bow reduced the total resistance by 6.30%, whereas the trim and sinkage showed no significant changes. The breakdown of the reduction ratio showed that friction resistance components were reduced by 10.62%, wave resistance by 44.05%, and viscous-pressure resistance by 45.33%. This highlights the effectiveness of an inverted bow in optimizing wave and viscous pressure, enhancing overall ship performance.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .