Simulation-based thermal analysis and validation of clothed thermal manikin

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Mehran University Research Journal of Engineering and Technology Pub Date : 2024-01-01 DOI:10.22581/muet1982.2401.3009
Muhammad Awais, Tayyab Naveed, Fiaz Hussain, S. Malik, Assad Farooq, S. Krzywinski
{"title":"Simulation-based thermal analysis and validation of clothed thermal manikin","authors":"Muhammad Awais, Tayyab Naveed, Fiaz Hussain, S. Malik, Assad Farooq, S. Krzywinski","doi":"10.22581/muet1982.2401.3009","DOIUrl":null,"url":null,"abstract":"Human thermal comfort within various environmental conditions is of paramount importance in a wide range of industries, including clothing design, indoor climate control, and occupational safety. Researchers are always in search the sophisticated tools and techniques that simulate the thermal regulation of human body under different environmental conditions. The present research aims to present a precise methodology for the simulation of clothed thermal manikin in controlled environmental conditions. A comprehensive method is recommended that consists of the use of 3D body scanning technology, different 2D and 3D CAD as well as thermal simulation software. The results of the simulations are very satisfactory, which are later validated with the wear trials with the help of the same clothed thermal manikin and under the same environmental conditions. The comparative analysis shows some deviations that are discussed thoroughly and the need for further research is highlighted in the papers as well. Furthermore, the present research gives us a digital platform to understand the clothing's thermal comfort and the parameters that affect it with the consideration of the draping behavior of the clothing, microclimate, thermal properties, and surrounding environmental conditions.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":"22 12","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2401.3009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human thermal comfort within various environmental conditions is of paramount importance in a wide range of industries, including clothing design, indoor climate control, and occupational safety. Researchers are always in search the sophisticated tools and techniques that simulate the thermal regulation of human body under different environmental conditions. The present research aims to present a precise methodology for the simulation of clothed thermal manikin in controlled environmental conditions. A comprehensive method is recommended that consists of the use of 3D body scanning technology, different 2D and 3D CAD as well as thermal simulation software. The results of the simulations are very satisfactory, which are later validated with the wear trials with the help of the same clothed thermal manikin and under the same environmental conditions. The comparative analysis shows some deviations that are discussed thoroughly and the need for further research is highlighted in the papers as well. Furthermore, the present research gives us a digital platform to understand the clothing's thermal comfort and the parameters that affect it with the consideration of the draping behavior of the clothing, microclimate, thermal properties, and surrounding environmental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟的热分析和穿衣热人体模型验证
人体在各种环境条件下的热舒适度对服装设计、室内气候控制和职业安全等众多行业都至关重要。研究人员一直在寻找模拟不同环境条件下人体热调节的先进工具和技术。本研究旨在提出一种在受控环境条件下模拟穿衣热人体模型的精确方法。建议采用一种综合方法,包括使用三维人体扫描技术、不同的二维和三维 CAD 以及热模拟软件。模拟结果非常令人满意,随后在相同的环境条件下,借助相同的穿衣热敏人体模型进行了磨损试验,验证了模拟结果。比较分析表明存在一些偏差,论文对这些偏差进行了深入讨论,并强调了进一步研究的必要性。此外,目前的研究为我们提供了一个数字化平台,让我们了解服装的热舒适性以及影响热舒适性的参数,同时考虑到服装的悬垂行为、微气候、热特性和周围环境条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
76
审稿时长
40 weeks
期刊最新文献
Heat transfer augmentation through engine oil-based hybrid nanofluid inside a trapezoid cavity Sustainable natural dyeing of cellulose with agricultural medicinal plant waste, new shades development with nontoxic sustainable elements Fabrication of low-cost and environmental-friendly EHD printable thin film nanocomposite triboelectric nanogenerator using household recyclable materials Compositional analysis of dark colored particulates homogeneously emitted with combustion gases (dark plumes) from brick making kilns situated in the area of Khyber Pakhtunkhwa, Pakistan Biosorption studies on arsenic (III) removal from industrial wastewater by using fixed and fluidized bed operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1