Study of green and sustainable heterogeneous catalyst produced from Javanese Moringa oleifera leaf ash for the transesterification of Calophyllum inophyllum seed oil
{"title":"Study of green and sustainable heterogeneous catalyst produced from Javanese Moringa oleifera leaf ash for the transesterification of Calophyllum inophyllum seed oil","authors":"Destania Ayu, Wega Ramdhani, Trisunaryanti, Triyono","doi":"10.21924/cst.8.2.2023.1202","DOIUrl":null,"url":null,"abstract":"The transesterification of Calophyllum inophyllum seed oil into biodiesel using Javanese Moringa oleifera leaf ash catalyst with various reaction conditions has been completed. MA-500 (Moringa ash at 500°C for 3 h) and MA-900 (Moringa ash at 900°C for 3 h) catalysts were obtained by grinding Javanese old Moringa oleifera leaf (MP) and then calcined for 3 h at 500 and 900°C. The crude Calophyllum inophyllum seed oil was degummed (OD) prior to continue the esterification process (ODE). The MA-500 and MA-900 catalysts were tested for their activity and selectivity through the ODE transesterification with various catalyst weights (3, 6, and 9% (w/w)), reaction temperature (55, 60, and 65°C), oil: methanol mole ratio (1:3, 1:6, and 1:9), and reaction time (60, 90, 120, and 150 minutes). The results showed that the MA-500 and MA-900 catalysts contained 18.17% and 52.91% Ca respectively. The esterification reaction could reduce FFA levels to 89.82%, from 19.46% to 1.98%. ODE transesterification with MA-900 catalyst optimum reaction conditions with a catalyst weight of 3%, reaction temperature of 60°C, oil: methanol mole ratio of 1:9, and reaction time of 120 min, 76.17% FAME yield was observed. The MA-900 catalyst has the potential to be an effective green catalyst.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":"24 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.8.2.2023.1202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The transesterification of Calophyllum inophyllum seed oil into biodiesel using Javanese Moringa oleifera leaf ash catalyst with various reaction conditions has been completed. MA-500 (Moringa ash at 500°C for 3 h) and MA-900 (Moringa ash at 900°C for 3 h) catalysts were obtained by grinding Javanese old Moringa oleifera leaf (MP) and then calcined for 3 h at 500 and 900°C. The crude Calophyllum inophyllum seed oil was degummed (OD) prior to continue the esterification process (ODE). The MA-500 and MA-900 catalysts were tested for their activity and selectivity through the ODE transesterification with various catalyst weights (3, 6, and 9% (w/w)), reaction temperature (55, 60, and 65°C), oil: methanol mole ratio (1:3, 1:6, and 1:9), and reaction time (60, 90, 120, and 150 minutes). The results showed that the MA-500 and MA-900 catalysts contained 18.17% and 52.91% Ca respectively. The esterification reaction could reduce FFA levels to 89.82%, from 19.46% to 1.98%. ODE transesterification with MA-900 catalyst optimum reaction conditions with a catalyst weight of 3%, reaction temperature of 60°C, oil: methanol mole ratio of 1:9, and reaction time of 120 min, 76.17% FAME yield was observed. The MA-900 catalyst has the potential to be an effective green catalyst.