Energy efficiency optimization of architectural projects using an Evolutionary Algorithm combined with Energy Plus

Giulia Piazza Fernandes Soares, Pedro Jose Perez Martinez
{"title":"Energy efficiency optimization of architectural projects using an Evolutionary Algorithm combined with Energy Plus","authors":"Giulia Piazza Fernandes Soares, Pedro Jose Perez Martinez","doi":"10.17271/23188472118420234677","DOIUrl":null,"url":null,"abstract":"This study formulates an optimization problem that adjusts social housing physical parameters to minimize energy consumption and thermal discomfort. Candidate solutions were generated using Genetic Algorithm via the Python computational platform and evaluated on the EnergyPlus program. The analyzed social housing unit meets minimum conditions according to Brazilian standards NBR 15575 and 15220 and the Federal Government’s Casa Verde Amarela Program. Optimization variables included cardinal tweaking; thickness of materials that make up external walls, roofing, and flooring; external wall and roof absorptance; floor-to-ceiling height and window size. Unlike other studies, instead of optimizing the thermal transmittance of walls, roof, and floor, we decided to directly target their thickness and to optimize window size and the floor-to-ceiling height. Evaluated according to different physical project configurations, the results proved to be coherent, presenting adequate variable exploration in order to obtain a project that universalizes the use of simple and systemic techniques to improve energy efficiency and that can be applied to any type of housing. We also obtained solution automation, providing an optimal feasible solution that increases energy efficiency and reduces energy consumption, thus contributing to a more sustainable project.","PeriodicalId":250730,"journal":{"name":"Revista Nacional de Gerenciamento de Cidades","volume":"102 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Nacional de Gerenciamento de Cidades","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17271/23188472118420234677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study formulates an optimization problem that adjusts social housing physical parameters to minimize energy consumption and thermal discomfort. Candidate solutions were generated using Genetic Algorithm via the Python computational platform and evaluated on the EnergyPlus program. The analyzed social housing unit meets minimum conditions according to Brazilian standards NBR 15575 and 15220 and the Federal Government’s Casa Verde Amarela Program. Optimization variables included cardinal tweaking; thickness of materials that make up external walls, roofing, and flooring; external wall and roof absorptance; floor-to-ceiling height and window size. Unlike other studies, instead of optimizing the thermal transmittance of walls, roof, and floor, we decided to directly target their thickness and to optimize window size and the floor-to-ceiling height. Evaluated according to different physical project configurations, the results proved to be coherent, presenting adequate variable exploration in order to obtain a project that universalizes the use of simple and systemic techniques to improve energy efficiency and that can be applied to any type of housing. We also obtained solution automation, providing an optimal feasible solution that increases energy efficiency and reduces energy consumption, thus contributing to a more sustainable project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用进化算法结合 Energy Plus 优化建筑项目能效
本研究提出了一个优化问题,通过调整社会住房的物理参数,最大限度地降低能耗和热不适感。通过 Python 计算平台使用遗传算法生成了候选解决方案,并在 EnergyPlus 程序中进行了评估。分析的社会住房单元符合巴西 NBR 15575 和 15220 标准以及联邦政府 Casa Verde Amarela 计划的最低条件。优化变量包括主调;构成外墙、屋顶和地板的材料厚度;外墙和屋顶吸收率;地板到天花板的高度和窗户尺寸。与其他研究不同的是,我们没有优化墙壁、屋顶和地板的热透射率,而是决定直接针对它们的厚度,优化窗户尺寸和地板到天花板的高度。根据不同的实际项目配置进行评估后,结果证明是一致的,我们进行了充分的变量探索,从而获得了一个普遍使用简单而系统的技术来提高能源效率的项目,该项目可适用于任何类型的住宅。我们还获得了解决方案自动化,提供了一个最佳的可行解决方案,提高了能源效率,降低了能源消耗,从而促进了项目的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of BIM in FM: Legal aspects in the context of the BIM BR strategy Air-conditioning supports for buildings: Challenges for a sustainable city The expansion of the urban perimeter of Londrina-Pr combined with the peripheral construction of housing complexes: in search of a sustainable development Spatial analysis for prioritizing areas for urban renewal projects in the city of Cali in Colombia What do the inventories say about the urban trees of cities that were originally occupied by tropical forests?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1