RESULTS OF AUTOMATIC COTTON CROPS MAPPING USING REMOTE SENSING DATA AND A PLANT GROWTH SIMULATION MODEL

IF 0.6 Q4 AGRONOMY AgroLife Scientific Journal Pub Date : 2023-12-31 DOI:10.17930/agl2023211
Rinat Gulyaev, A. Sultonov, R. Yunusov, D.R. Rafikov, Kamila Gulyaeva, Oybek Kimsanbaev, Bakhtiyor Kakhkhorov
{"title":"RESULTS OF AUTOMATIC COTTON CROPS MAPPING USING REMOTE SENSING DATA AND A PLANT GROWTH SIMULATION MODEL","authors":"Rinat Gulyaev, A. Sultonov, R. Yunusov, D.R. Rafikov, Kamila Gulyaeva, Oybek Kimsanbaev, Bakhtiyor Kakhkhorov","doi":"10.17930/agl2023211","DOIUrl":null,"url":null,"abstract":"The paper presents the results of application of the method of automatic generation of representative and unbiased set for in-season cotton crop mapping, based on crop simulation model, previously parameterized using ground truth and satellite data. The method provided confident mapping of cotton fields without using actual ground-truth information or a-priori information about their in-season phenology. Overall mapping accuracy calculated using relevant ground truth data for cotton fields has reached 95.6 %. Consideration of time series of NDVI values as a model of phase characteristics allowed using relatively simple criteria to identify typical representatives of the selected crop on the basis of analysis of their seasonal phenology and made it possible to build a reference sample for modeling and further classification.","PeriodicalId":44979,"journal":{"name":"AgroLife Scientific Journal","volume":"102 21","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgroLife Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17930/agl2023211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the results of application of the method of automatic generation of representative and unbiased set for in-season cotton crop mapping, based on crop simulation model, previously parameterized using ground truth and satellite data. The method provided confident mapping of cotton fields without using actual ground-truth information or a-priori information about their in-season phenology. Overall mapping accuracy calculated using relevant ground truth data for cotton fields has reached 95.6 %. Consideration of time series of NDVI values as a model of phase characteristics allowed using relatively simple criteria to identify typical representatives of the selected crop on the basis of analysis of their seasonal phenology and made it possible to build a reference sample for modeling and further classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遥感数据和植物生长模拟模型自动绘制棉花作物图的结果
本文介绍了根据作物模拟模型自动生成具有代表性和无偏见的当季棉花作物测绘集的方法的应用结果,该模型先前利用地面实况和卫星数据进行了参数化。该方法无需使用实际的地面实况信息或关于棉田当季物候的先验信息,即可提供可靠的棉田测绘。使用相关地面实况数据计算出的棉田总体测绘精度达到 95.6%。将归一化差异植被指数(NDVI)值的时间序列作为物候期特征模型进行考虑,可以在分析季节物候的基础上,利用相对简单的标准确定所选作物的典型代表,并为建模和进一步分类建立参考样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
WINTER WHEAT MUTATION VARIABILITY UNDER LOW-DAMAGE ABILITY MUTAGEN ACTION ANTIFUNGAL ACTIVITY OF Pediococcus pentosaceus ISOLATED FROM BAMBARA GROUNDNUT (Vigna subterranea (L.) Verdc.) SEEDS AGAINST Aspergillus flavus THE DIFFERENCES IN ARABIAN HORSE BODY MEASUREMENTS USED IN DIFFERENT HORSE SPORTS (RACING AND JEREED) A SHORT NOTE ON WATER QUALITY AND SOME BIODIVERSITY COMPONENTS IN GURBAN VALLEY, GIURGIU COUNTY ANALYSIS OF GENOTYPE X ENVIRONMENT INTERACTION IN TRITICALE LINES WITH AMMI AND PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1