DEM-based analysis of water inrush process of underground engineering face with intermittent joints in karst region

Shuguo Zhang, Ling Dai, Xiaohu Yuan, Qirui Wang, Jingmao Xu
{"title":"DEM-based analysis of water inrush process of underground engineering face with intermittent joints in karst region","authors":"Shuguo Zhang, Ling Dai, Xiaohu Yuan, Qirui Wang, Jingmao Xu","doi":"10.56748/ejse.23480","DOIUrl":null,"url":null,"abstract":"Water inrush disaster of karst tunnel often lead to significant economic losses and serious casualties, which is an urgent engineering roadblock to be solved in the construction of tunnel in karst area. In this paper, three-dimensional discrete element method considering fluid-solid coupling effect and structural characteristics of water-mud resistant rock mass is adopted to systematically study the evolution law of displacement field and seepage field of intermittent joint type water-mud resistant rock mass of tunnel face and its water inrush critical characteristics during the process of sequential excavation of karst tunnel close to the frontal high-pressure water-rich karst cavity. The results show that: With the tunnel face gradually approaching the front-concealed high-pressure water-rich karst cavity, the stability of water-mud resistant rock mass is increasingly affected by high-pressure karst water, and karst water pressure gradually becomes the main control factor. The closer the tunnel face is to the front-concealed high-pressure water-rich karst cavity, the greater the extrusion displacement of karst tunnel face and its increase amplitude, the higher damage degree of water-mud resistant rock mass of face. With the advance of tunnel excavation, the intermittent cracks in the water-mud resistant rock mass of face gradually connect and form a stable hydraulic connection. The flow velocity and seepage pressure of karst water rise significantly at the moment of overall instability of face and the formation of water inrush channel, showing obvious precursor characteristics. The research achievements provide a reference for early warning and prevention and control of water inrush disaster of karst tunnel face.","PeriodicalId":502439,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" 490","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.23480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water inrush disaster of karst tunnel often lead to significant economic losses and serious casualties, which is an urgent engineering roadblock to be solved in the construction of tunnel in karst area. In this paper, three-dimensional discrete element method considering fluid-solid coupling effect and structural characteristics of water-mud resistant rock mass is adopted to systematically study the evolution law of displacement field and seepage field of intermittent joint type water-mud resistant rock mass of tunnel face and its water inrush critical characteristics during the process of sequential excavation of karst tunnel close to the frontal high-pressure water-rich karst cavity. The results show that: With the tunnel face gradually approaching the front-concealed high-pressure water-rich karst cavity, the stability of water-mud resistant rock mass is increasingly affected by high-pressure karst water, and karst water pressure gradually becomes the main control factor. The closer the tunnel face is to the front-concealed high-pressure water-rich karst cavity, the greater the extrusion displacement of karst tunnel face and its increase amplitude, the higher damage degree of water-mud resistant rock mass of face. With the advance of tunnel excavation, the intermittent cracks in the water-mud resistant rock mass of face gradually connect and form a stable hydraulic connection. The flow velocity and seepage pressure of karst water rise significantly at the moment of overall instability of face and the formation of water inrush channel, showing obvious precursor characteristics. The research achievements provide a reference for early warning and prevention and control of water inrush disaster of karst tunnel face.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 DEM 的岩溶地区有间歇节理的地下工程工作面涌水过程分析
岩溶隧道涌水灾害往往造成重大经济损失和严重人员伤亡,是岩溶地区隧道建设亟待解决的工程难题。本文采用三维离散元法,考虑流固耦合效应和抗水泥岩体的结构特征,系统研究了隧道面间歇节理型抗水泥岩体在靠近正面高压富水岩溶洞室连续开挖过程中位移场和渗流场的演变规律及其涌水临界特征。结果表明随着隧道工作面逐渐接近正面隐蔽的高压富水岩溶溶腔,抗水泥岩体的稳定性受高压岩溶水的影响越来越大,岩溶水压力逐渐成为主要控制因素。隧道工作面越接近前隐伏高压富水岩溶腔,岩溶隧道工作面的挤压位移越大,其增大的幅度也越大,工作面抗水泥岩体的破坏程度也越高。随着隧道开挖的推进,工作面抗水泥岩体的断续裂隙逐渐连通,形成稳定的水力联系。在工作面整体失稳和涌水通道形成的瞬间,岩溶水的流速和渗流压力明显上升,表现出明显的前兆特征。研究成果为岩溶隧道工作面涌水灾害的预警与防控提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Modeling of Steel Fiber Reinforced Recycled Concrete Filled Steel Tube Column Under Cyclic Loading Numerical Simulation of Steel Reinforced Lightweight Aggregate Concrete Beams Based on Analysis of Push-out Test Investigating the Behaviour and Strength of Unbonded Pre-tensioned RC Slabs Subject to Flexural Loads Evaluation of the Effect of De-icing Chemicals on Performance of Airport Concrete Pavement under Freeze-Thaw Cycles Response characteristics of surrounding rock and segment structure of large longitudinal slope tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1