J. Zhao, Guili Liu, Lin Wei, G. Jiao, Yuling Chen, Zhonghua Yang, Guoying Zhang
{"title":"Density functional theory study on the electronic and optical properties of full-hydrogenated stanene","authors":"J. Zhao, Guili Liu, Lin Wei, G. Jiao, Yuling Chen, Zhonghua Yang, Guoying Zhang","doi":"10.1142/s0217984924501598","DOIUrl":null,"url":null,"abstract":"The lack of a bandgap in stanene severely limits its outstanding characteristics in optoelectronic devices. Using first-principles calculations, we systematically investigate the effects of full hydrogenation and shear deformation on the electronic structure and optical properties of stanene. Hydrogenation exerts a remarkable impact on electronic structure of stanene, enabling surface state transition from quasi-metallic to semiconducting. Shear degrades the structural stability of full-hydrogenated stanene (FHstanene). FHstanene exhibits a tunable bandgap of 1.327[Formula: see text]eV, which can be further reduced to 0.719[Formula: see text]eV through shear deformation. The presence of spin-orbit coupling (SOC) induces band splitting in FHstanene. The maximum optical absorption of FHstanene occurs at 291[Formula: see text]nm, while the reflectance peak is observed at 449[Formula: see text]nm. The variation in bandgap due to deformation results in a redshift in the absorption coefficient and reflectance, and shear deformation increases the reflectance of FHstanene. These findings broaden the application prospects of stanene in novel nano-optoelectronic devices.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" 18","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924501598","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of a bandgap in stanene severely limits its outstanding characteristics in optoelectronic devices. Using first-principles calculations, we systematically investigate the effects of full hydrogenation and shear deformation on the electronic structure and optical properties of stanene. Hydrogenation exerts a remarkable impact on electronic structure of stanene, enabling surface state transition from quasi-metallic to semiconducting. Shear degrades the structural stability of full-hydrogenated stanene (FHstanene). FHstanene exhibits a tunable bandgap of 1.327[Formula: see text]eV, which can be further reduced to 0.719[Formula: see text]eV through shear deformation. The presence of spin-orbit coupling (SOC) induces band splitting in FHstanene. The maximum optical absorption of FHstanene occurs at 291[Formula: see text]nm, while the reflectance peak is observed at 449[Formula: see text]nm. The variation in bandgap due to deformation results in a redshift in the absorption coefficient and reflectance, and shear deformation increases the reflectance of FHstanene. These findings broaden the application prospects of stanene in novel nano-optoelectronic devices.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.