S. Muñoz Pérez, Luigi Italo Villena Zapata, Franklin Luis Tesen Muñoz, Yan Carlos Coronel Sanchez, Carlos Eduardo Ramos
{"title":"Influence of coconut fiber on mortar properties in masonry walls","authors":"S. Muñoz Pérez, Luigi Italo Villena Zapata, Franklin Luis Tesen Muñoz, Yan Carlos Coronel Sanchez, Carlos Eduardo Ramos","doi":"10.56748/ejse.23391","DOIUrl":null,"url":null,"abstract":"The scarcity of stone materials, such as sand, has led to the exploration of alternative, sustainable options for mortars, including coconut fiber. This material, with minimal intervention in various areas of Peru, has proven to be an excellent choice in mortar preparation due to its characteristics of strength and durability. The study aimed to assess the influence of coconut fiber in mortar applications on the mechanical properties of clay brick masonry. Mixes were created with ratios of 1:3, 1:4, and 1:5, incorporating coconut fiber pre-treated at percentages of 0.5%, 1%, 1.5%, and 2% relative to the weight of cement and a length of 3 cm, respectively. Tests, including fluidity, compressive strength, and flexural strength, were conducted on mortar specimens. The behavior of clay brick masonry was evaluated through flexural strength, axial compression in prisms, and diagonal compression in walls. The most favorable result was observed in the 1:3 mix with the addition of 0.5% fiber, demonstrating a remarkable 22.6% increase in flexural strength compared to standard mortar. Subsequently, in masonry tests, the addition of 0.5% coconut fiber in 1:3 ratio mortars showed increases of 3.9%, 65.9%, and 3.3% in compressive strength, flexural strength, and diagonal compression in walls, respectively, compared to the standard samples. In conclusion, the addition of coconut fiber contributes significantly to the enhancement of mortar properties.","PeriodicalId":502439,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.23391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The scarcity of stone materials, such as sand, has led to the exploration of alternative, sustainable options for mortars, including coconut fiber. This material, with minimal intervention in various areas of Peru, has proven to be an excellent choice in mortar preparation due to its characteristics of strength and durability. The study aimed to assess the influence of coconut fiber in mortar applications on the mechanical properties of clay brick masonry. Mixes were created with ratios of 1:3, 1:4, and 1:5, incorporating coconut fiber pre-treated at percentages of 0.5%, 1%, 1.5%, and 2% relative to the weight of cement and a length of 3 cm, respectively. Tests, including fluidity, compressive strength, and flexural strength, were conducted on mortar specimens. The behavior of clay brick masonry was evaluated through flexural strength, axial compression in prisms, and diagonal compression in walls. The most favorable result was observed in the 1:3 mix with the addition of 0.5% fiber, demonstrating a remarkable 22.6% increase in flexural strength compared to standard mortar. Subsequently, in masonry tests, the addition of 0.5% coconut fiber in 1:3 ratio mortars showed increases of 3.9%, 65.9%, and 3.3% in compressive strength, flexural strength, and diagonal compression in walls, respectively, compared to the standard samples. In conclusion, the addition of coconut fiber contributes significantly to the enhancement of mortar properties.