Seasonal Analysis and Capacity Planning of Solar Energy Demand-to-Supply Management: Case Study of a Logistics Distribution Center

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2023-12-29 DOI:10.3390/en17010191
Akihiko Takada, Hiromasa Ijuin, Masayuki Matsui, Tetsuo Yamada
{"title":"Seasonal Analysis and Capacity Planning of Solar Energy Demand-to-Supply Management: Case Study of a Logistics Distribution Center","authors":"Akihiko Takada, Hiromasa Ijuin, Masayuki Matsui, Tetsuo Yamada","doi":"10.3390/en17010191","DOIUrl":null,"url":null,"abstract":"In recent years, global warming and environmental problems have become more serious due to greenhouse gas (GHG) emissions. Harvesting solar energy for production and logistic activities in supply chains, including factories and distribution centers, has been promoted as an effective means to reduce GHG emissions. However, it is difficult to balance the supply and demand of solar energy, owing to its intermittent nature, i.e., the output depends on the daylight and season. Moreover, the use of large-capacity solar power generation systems and batteries incurs higher installation costs. In order to maintain low costs, demand-to-supply management of solar energy, based on appropriate seasonal analysis of power generation and consumption and the capacity planning for power generation and the storage battery, is necessary. In this study, the on-demand cumulative control method is applied to actual power consumption data and solar power generation data estimated at a distribution center. Moreover, the monthly, seasonal, and temporal characteristics of power generation and consumption at the distribution center are analyzed. Additionally, the total amount of power purchased is investigated for solar energy demand-to-supply management.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"84 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010191","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, global warming and environmental problems have become more serious due to greenhouse gas (GHG) emissions. Harvesting solar energy for production and logistic activities in supply chains, including factories and distribution centers, has been promoted as an effective means to reduce GHG emissions. However, it is difficult to balance the supply and demand of solar energy, owing to its intermittent nature, i.e., the output depends on the daylight and season. Moreover, the use of large-capacity solar power generation systems and batteries incurs higher installation costs. In order to maintain low costs, demand-to-supply management of solar energy, based on appropriate seasonal analysis of power generation and consumption and the capacity planning for power generation and the storage battery, is necessary. In this study, the on-demand cumulative control method is applied to actual power consumption data and solar power generation data estimated at a distribution center. Moreover, the monthly, seasonal, and temporal characteristics of power generation and consumption at the distribution center are analyzed. Additionally, the total amount of power purchased is investigated for solar energy demand-to-supply management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能供需管理的季节分析和产能规划:物流配送中心案例研究
近年来,由于温室气体的排放,全球变暖和环境问题日益严重。在供应链(包括工厂和配送中心)的生产和物流活动中收集太阳能已被作为减少温室气体排放的有效手段加以推广。然而,由于太阳能具有间歇性,即输出取决于日光和季节,因此很难实现供需平衡。此外,使用大容量太阳能发电系统和蓄电池的安装成本较高。为了保持低成本,有必要在对发电和用电进行适当的季节性分析以及对发电和蓄电池进行容量规划的基础上,对太阳能进行供需管理。在本研究中,按需累积控制方法被应用于一个配送中心的实际电力消耗数据和太阳能发电量估算数据。此外,还分析了配送中心发电和用电的月度、季节和时间特征。此外,还研究了太阳能供需管理的购电总量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium Adaptive Control Approach for Accurate Current Sharing and Voltage Regulation in DC Microgrid Applications Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC) Conducting a Geographical Information System-Based Multi-Criteria Analysis to Assess the Potential and Location for Offshore Wind Farms in Poland Investigating the Role of Byproduct Oxygen in UK-Based Future Scenario Models for Green Hydrogen Electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1