Multi-Phase Vertical Take-Off and Landing Trajectory Optimization with Feasible Initial Guesses

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE Aerospace Pub Date : 2023-12-29 DOI:10.3390/aerospace11010039
Zhidong Lu, Haichao Hong, Florian Holzapfel
{"title":"Multi-Phase Vertical Take-Off and Landing Trajectory Optimization with Feasible Initial Guesses","authors":"Zhidong Lu, Haichao Hong, Florian Holzapfel","doi":"10.3390/aerospace11010039","DOIUrl":null,"url":null,"abstract":"The advancement of electric vertical take-off and landing (eVTOL) aircraft has expanded the horizon of urban air mobility. However, the challenge of generating precise vertical take-off and landing (VTOL) trajectories that comply with airworthiness requirements remains. This paper presents an approach for optimizing VTOL trajectories considering six degrees of freedom (6DOF) dynamics and operational constraints. Multi-phase optimal control problems are formulated to address specific constraints in various flight stages. The incremental nonlinear dynamic inversion (INDI) controller is employed to execute the flight mission in each phase. Controlled flight simulations yield dynamically feasible trajectories that serve as initial guesses for generating sub-optimal trajectories within individual phases. A feasible and sub-optimal initial guess for the holistic multi-phase problem is established by concatenating these single-phase trajectories. Focusing on a tilt-wing eVTOL aircraft, this paper computes VTOL trajectories leveraging the proposed initial guess generation procedure. These trajectories account for complex flight dynamics, align with various operation constraints, and minimize electric energy consumption.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"40 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010039","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of electric vertical take-off and landing (eVTOL) aircraft has expanded the horizon of urban air mobility. However, the challenge of generating precise vertical take-off and landing (VTOL) trajectories that comply with airworthiness requirements remains. This paper presents an approach for optimizing VTOL trajectories considering six degrees of freedom (6DOF) dynamics and operational constraints. Multi-phase optimal control problems are formulated to address specific constraints in various flight stages. The incremental nonlinear dynamic inversion (INDI) controller is employed to execute the flight mission in each phase. Controlled flight simulations yield dynamically feasible trajectories that serve as initial guesses for generating sub-optimal trajectories within individual phases. A feasible and sub-optimal initial guess for the holistic multi-phase problem is established by concatenating these single-phase trajectories. Focusing on a tilt-wing eVTOL aircraft, this paper computes VTOL trajectories leveraging the proposed initial guess generation procedure. These trajectories account for complex flight dynamics, align with various operation constraints, and minimize electric energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可行初始猜测优化多阶段垂直起降轨迹
电动垂直起降(eVTOL)飞机的发展扩大了城市空中交通的视野。然而,如何生成符合适航要求的精确垂直起降(VTOL)轨迹仍然是一项挑战。本文提出了一种考虑六自由度(6DOF)动力学和操作约束的 VTOL 轨迹优化方法。针对不同飞行阶段的具体约束条件,提出了多阶段优化控制问题。增量非线性动态反演(INDI)控制器用于执行各阶段的飞行任务。受控飞行模拟产生动态可行轨迹,这些轨迹可作为初始猜测,用于在各个阶段内生成次优轨迹。通过串联这些单阶段轨迹,为整体多阶段问题建立可行的次优初始猜测。本文以倾转机翼的 eVTOL 飞机为重点,利用建议的初始猜测生成程序计算 VTOL 轨迹。这些轨迹考虑了复杂的飞行动态,符合各种运行约束条件,并最大限度地降低了电能消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
期刊最新文献
Continuum Modeling and Boundary Control of a Satellite with a Large Space Truss Structure Topology Optimization of a Single-Point Diamond-Turning Fixture for a Deployable Primary Mirror Telescope Coupled Aerodynamics–Structure Analysis and Wind Tunnel Experiments on Passive Hinge Oscillation of Wing-Tip-Chained Airplanes A Study for a Radio Telescope in Indonesia: Parabolic Design, Simulation of a Horn Antenna, and Radio Frequency Survey in Frequency of 0.045–18 GHz Decision Science-Driven Assessment of Ti Alloys for Aircraft Landing Gear Beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1