Neuropathological insights from SHANK3 mutant animal models

Jia-Wei Zhang, Da-Jian He, Xiao-Jiang Li
{"title":"Neuropathological insights from SHANK3 mutant animal models","authors":"Jia-Wei Zhang, Da-Jian He, Xiao-Jiang Li","doi":"10.20517/and.2023.18","DOIUrl":null,"url":null,"abstract":"SHANK3 is a protein primarily found in the postsynaptic density (PSD) of excitatory synapses in the brain. Heterozygous mutations in the shank3 gene have been linked to autism spectrum disorder (ASD) and intellectual disability. There are various animal models carrying mutant SHANK3 that have provided valuable insights into the pathogenesis of ASD. In this review, we will discuss these animal models, with a specific focus on the neuropathology observed in shank3 mouse and monkey models. These models are particularly important as they share closer similarities to humans and are capable of more accurately recapitulating the neuropathological features observed in individuals with ASD. Mice with mutations in the shank3 gene exhibit deficits in social behavior, communication, and repetitive behaviors, which are core features of ASD and support the link between SHANK3 and ASD. However, studies of monkey models with SHANK3 targeting by CRISPR/Cas9 have demonstrated that, unlike mice with completely knocked-out shank3 genes, the monkey model with complete deletion of SHANK3 displays a reduction in the number of neuronal cells. This review discusses the species-specific neuropathology in SHANK3/shank3 knockout mice and monkeys. The differences in neuropathology in SHANK3/shank3 mutant mouse and monkey models suggest that non-human primate models are highly valuable for investigating the mechanism of neurodegeneration that may selectively occur in primate brains.","PeriodicalId":93251,"journal":{"name":"Ageing and neurodegenerative diseases","volume":"23 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing and neurodegenerative diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/and.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SHANK3 is a protein primarily found in the postsynaptic density (PSD) of excitatory synapses in the brain. Heterozygous mutations in the shank3 gene have been linked to autism spectrum disorder (ASD) and intellectual disability. There are various animal models carrying mutant SHANK3 that have provided valuable insights into the pathogenesis of ASD. In this review, we will discuss these animal models, with a specific focus on the neuropathology observed in shank3 mouse and monkey models. These models are particularly important as they share closer similarities to humans and are capable of more accurately recapitulating the neuropathological features observed in individuals with ASD. Mice with mutations in the shank3 gene exhibit deficits in social behavior, communication, and repetitive behaviors, which are core features of ASD and support the link between SHANK3 and ASD. However, studies of monkey models with SHANK3 targeting by CRISPR/Cas9 have demonstrated that, unlike mice with completely knocked-out shank3 genes, the monkey model with complete deletion of SHANK3 displays a reduction in the number of neuronal cells. This review discusses the species-specific neuropathology in SHANK3/shank3 knockout mice and monkeys. The differences in neuropathology in SHANK3/shank3 mutant mouse and monkey models suggest that non-human primate models are highly valuable for investigating the mechanism of neurodegeneration that may selectively occur in primate brains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SHANK3 突变动物模型的神经病理学启示
SHANK3 是一种蛋白质,主要存在于大脑兴奋性突触的突触后密度(PSD)中。shank3基因的杂合突变与自闭症谱系障碍(ASD)和智力障碍有关。有多种携带突变型 SHANK3 的动物模型为了解 ASD 的发病机制提供了宝贵的资料。在本综述中,我们将讨论这些动物模型,并特别关注在 shank3 小鼠和猴子模型中观察到的神经病理学。这些模型尤为重要,因为它们与人类有更多相似之处,能够更准确地再现在 ASD 患者身上观察到的神经病理学特征。shank3基因突变的小鼠在社交行为、交流和重复行为方面表现出缺陷,这些都是ASD的核心特征,也支持了SHANK3与ASD之间的联系。然而,通过CRISPR/Cas9技术靶向SHANK3的猴子模型研究表明,与完全敲除shank3基因的小鼠不同,完全缺失SHANK3的猴子模型表现出神经细胞数量的减少。本综述将讨论 SHANK3/shank3 基因敲除小鼠和猴子的物种特异性神经病理学。SHANK3/shank3突变小鼠和猴子模型在神经病理学方面的差异表明,非人灵长类动物模型对于研究灵长类动物大脑中可能选择性发生的神经变性的机制非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages and differences among various animal models of Huntington’s disease Age-related energetic reprogramming in glial cells: possible correlations with Parkinson’s disease Fibril-forming motif of non-expanded ataxin-3 revealed by scanning proline mutagenesis Automatically targeting the dorsolateral subthalamic nucleus for functional connectivity-guided rTMS therapy Re-energising the brain: glucose metabolism, Tau protein and memory in ageing and dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1