Universal Input Single-Stage High-Power-Factor LED Driver with Active Low-Frequency Current Ripple Suppressed

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2023-12-28 DOI:10.3390/en17010183
Kuo-Ing Hwu, J. Shieh, Chien-Ting Lin
{"title":"Universal Input Single-Stage High-Power-Factor LED Driver with Active Low-Frequency Current Ripple Suppressed","authors":"Kuo-Ing Hwu, J. Shieh, Chien-Ting Lin","doi":"10.3390/en17010183","DOIUrl":null,"url":null,"abstract":"In this paper, a light-emitting diode (LED) driver with a high power factor (PF) and low-frequency current ripple suppression over a wide input range is presented, and a flyback converter is designed to operate in the discontinuous conduction mode (DCM), with a digital controller used to keep the duty cycle constant for half of the utility cycle under a fixed load and input voltage. This method ensures that the input current is in phase with the universal input voltage, thus achieving a high power factor without utilizing feedforward control. Furthermore, on the secondary side, the time of the zero point of the utility voltage can be attained so that the duty cycle can be updated at this time. In addition, a simple auxiliary circuit is connected parallel to the output side to absorb the excess output current of the flyback converter or to release the current to the load to make up for the shortage of the output current of the flyback converter so that the low-frequency ripple of the output current can be inhibited. There are only two current-detecting resistors used in this study: one is the output current-sensing resistor of the flyback converter, and the other is the output current-sensing resistor of the auxiliary circuit.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"29 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a light-emitting diode (LED) driver with a high power factor (PF) and low-frequency current ripple suppression over a wide input range is presented, and a flyback converter is designed to operate in the discontinuous conduction mode (DCM), with a digital controller used to keep the duty cycle constant for half of the utility cycle under a fixed load and input voltage. This method ensures that the input current is in phase with the universal input voltage, thus achieving a high power factor without utilizing feedforward control. Furthermore, on the secondary side, the time of the zero point of the utility voltage can be attained so that the duty cycle can be updated at this time. In addition, a simple auxiliary circuit is connected parallel to the output side to absorb the excess output current of the flyback converter or to release the current to the load to make up for the shortage of the output current of the flyback converter so that the low-frequency ripple of the output current can be inhibited. There are only two current-detecting resistors used in this study: one is the output current-sensing resistor of the flyback converter, and the other is the output current-sensing resistor of the auxiliary circuit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有主动低频电流纹波抑制功能的通用输入单级高功率因数 LED 驱动器
本文介绍了一种在宽输入范围内具有高功率因数 (PF) 和低频电流纹波抑制功能的发光二极管 (LED) 驱动器,并设计了一种反激式转换器,使其工作在不连续导通模式 (DCM),在固定负载和输入电压条件下,使用数字控制器保持占空比恒定,占空比为市电周期的一半。这种方法可确保输入电流与通用输入电压同相,从而在不使用前馈控制的情况下实现高功率因数。此外,在二次侧,可以获得市电电压零点的时间,从而在此时更新占空比。此外,输出侧还并联了一个简单的辅助电路,用于吸收反激式转换器多余的输出电流,或向负载释放电流以弥补反激式转换器输出电流的不足,从而抑制输出电流的低频纹波。本研究只使用了两个电流检测电阻:一个是反激式转换器的输出电流检测电阻,另一个是辅助电路的输出电流检测电阻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium Adaptive Control Approach for Accurate Current Sharing and Voltage Regulation in DC Microgrid Applications Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC) Conducting a Geographical Information System-Based Multi-Criteria Analysis to Assess the Potential and Location for Offshore Wind Farms in Poland Investigating the Role of Byproduct Oxygen in UK-Based Future Scenario Models for Green Hydrogen Electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1