Artificial Intelligence in the Construction Industry: A Systematic Review of the Entire Construction Value Chain Lifecycle

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2023-12-28 DOI:10.3390/en17010182
Christian Nnaemeka Egwim, H. Alaka, Eren Demir, Habeeb Balogun, Razak Olu-Ajayi, Ismail Sulaimon, Godoyon Wusu, Wasiu Yusuf, Adegoke A. Muideen
{"title":"Artificial Intelligence in the Construction Industry: A Systematic Review of the Entire Construction Value Chain Lifecycle","authors":"Christian Nnaemeka Egwim, H. Alaka, Eren Demir, Habeeb Balogun, Razak Olu-Ajayi, Ismail Sulaimon, Godoyon Wusu, Wasiu Yusuf, Adegoke A. Muideen","doi":"10.3390/en17010182","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a surge in the global digitization of corporate processes and concepts such as digital technology development which is growing at such a quick pace that the construction industry is struggling to catch up with latest developments. A formidable digital technology, artificial intelligence (AI), is recognized as an essential element within the paradigm of digital transformation, having been widely adopted across different industries. Also, AI is anticipated to open a slew of new possibilities for how construction projects are designed and built. To obtain a better knowledge of the trend and trajectory of research concerning AI technology application in the construction industry, this research presents an exhaustive systematic review of seventy articles toward AI applicability to the entire lifecycle of the construction value chain identified via the guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The review’s findings show foremostly that AI technologies are mostly used in facility management, creating a huge opportunity for the industry to profit by allowing facility managers to take proactive action. Secondly, it shows the potential for design expansion as a key benefit according to most of the selected literature. Finally, it found data augmentation as one of the quickest prospects for technical improvement. This knowledge will assist construction companies across the world in recognizing the efficiency and productivity advantages that AI technologies can provide while helping them make smarter technology investment decisions.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"14 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there has been a surge in the global digitization of corporate processes and concepts such as digital technology development which is growing at such a quick pace that the construction industry is struggling to catch up with latest developments. A formidable digital technology, artificial intelligence (AI), is recognized as an essential element within the paradigm of digital transformation, having been widely adopted across different industries. Also, AI is anticipated to open a slew of new possibilities for how construction projects are designed and built. To obtain a better knowledge of the trend and trajectory of research concerning AI technology application in the construction industry, this research presents an exhaustive systematic review of seventy articles toward AI applicability to the entire lifecycle of the construction value chain identified via the guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The review’s findings show foremostly that AI technologies are mostly used in facility management, creating a huge opportunity for the industry to profit by allowing facility managers to take proactive action. Secondly, it shows the potential for design expansion as a key benefit according to most of the selected literature. Finally, it found data augmentation as one of the quickest prospects for technical improvement. This knowledge will assist construction companies across the world in recognizing the efficiency and productivity advantages that AI technologies can provide while helping them make smarter technology investment decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑业中的人工智能:对整个建筑价值链生命周期的系统回顾
近年来,全球企业流程数字化和数字技术开发等概念迅猛发展,建筑行业正努力追赶最新发展。人工智能(AI)这一强大的数字技术已被公认为数字化转型范式中的重要元素,并已被各行各业广泛采用。此外,人工智能预计将为建筑项目的设计和建造带来一系列新的可能性。为了更好地了解有关人工智能技术在建筑行业应用的研究趋势和发展轨迹,本研究对七十篇文章进行了详尽的系统综述,这些文章都是根据系统综述和元分析首选报告项目(PRISMA)的指导方针确定的,涉及人工智能在建筑价值链整个生命周期中的应用。综述结果首先表明,人工智能技术主要用于设施管理,通过让设施管理者采取积极主动的行动,为行业创造了巨大的盈利机会。其次,根据大多数选定的文献,它显示了设计扩展的潜力,这是一项关键优势。最后,它发现数据增强是技术改进的最快前景之一。这些知识将帮助世界各地的建筑公司认识到人工智能技术可带来的效率和生产力优势,同时帮助他们做出更明智的技术投资决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Enzymatic In Situ Interesterification of Rapeseed Oil with Methyl Formate in Diesel Fuel Medium Adaptive Control Approach for Accurate Current Sharing and Voltage Regulation in DC Microgrid Applications Numerical Simulation of Double Layered Wire Mesh Integration on the Cathode for a Proton Exchange Membrane Fuel Cell (PEMFC) Conducting a Geographical Information System-Based Multi-Criteria Analysis to Assess the Potential and Location for Offshore Wind Farms in Poland Investigating the Role of Byproduct Oxygen in UK-Based Future Scenario Models for Green Hydrogen Electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1