Estimasi Simpanan Karbon Tegakan Menggunakan Citra Sentinel-2A Pada Kawasan Mangrove Labuan Tereng Kabupaten Lombok Barat

Moh Rodiansyah Hambali, A. C. Ichsan, Niechi Valentino, Andrie Ridzki Prasetyo
{"title":"Estimasi Simpanan Karbon Tegakan Menggunakan Citra Sentinel-2A Pada Kawasan Mangrove Labuan Tereng Kabupaten Lombok Barat","authors":"Moh Rodiansyah Hambali, A. C. Ichsan, Niechi Valentino, Andrie Ridzki Prasetyo","doi":"10.29303/jstl.v9i4.522","DOIUrl":null,"url":null,"abstract":"The primary worry in addressing climate change problems is the elevation in global temperatures resulting from the growing levels of CO2 emissions in the atmosphere. Mangrove ecosystems contribute to the \"blue carbon\" plan which is capable of storing carbon well, this research was conducted to assess carbon storage within the mangrove forest ecosystem by combining Sentinel-2A satellite imagery with on-site field measurements. The data analysis findings indicate the presence of six distinct mangrove varieties, namely R. mucronata, A. marina, R. apiculata, S. alba, E. agallocha, and C. decandra. The R. mucronata type is the type that dominates the mangrove area with an average carbon amount of 122.1 tonnes/ha. Correlation analysis shows a strong relationship between IKVm and mangrove forest carbon stocks, with a correlation coefficient value of 80%. In the regression model, the power model provides the best equation for estimating carbon stocks with a coefficient of determination value of 64.4% giving a model equation of y = 109.51x1.2381. Analysis of image carbon reserves obtained the lowest value, namely 0.02-10.46 tonnes/ha which was in the very rare vegetation density type and the highest carbon reserve value was 58.30-59.02 tonnes/ha in the very high density class.","PeriodicalId":274989,"journal":{"name":"JURNAL SAINS TEKNOLOGI & LINGKUNGAN","volume":"34 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL SAINS TEKNOLOGI & LINGKUNGAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/jstl.v9i4.522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary worry in addressing climate change problems is the elevation in global temperatures resulting from the growing levels of CO2 emissions in the atmosphere. Mangrove ecosystems contribute to the "blue carbon" plan which is capable of storing carbon well, this research was conducted to assess carbon storage within the mangrove forest ecosystem by combining Sentinel-2A satellite imagery with on-site field measurements. The data analysis findings indicate the presence of six distinct mangrove varieties, namely R. mucronata, A. marina, R. apiculata, S. alba, E. agallocha, and C. decandra. The R. mucronata type is the type that dominates the mangrove area with an average carbon amount of 122.1 tonnes/ha. Correlation analysis shows a strong relationship between IKVm and mangrove forest carbon stocks, with a correlation coefficient value of 80%. In the regression model, the power model provides the best equation for estimating carbon stocks with a coefficient of determination value of 64.4% giving a model equation of y = 109.51x1.2381. Analysis of image carbon reserves obtained the lowest value, namely 0.02-10.46 tonnes/ha which was in the very rare vegetation density type and the highest carbon reserve value was 58.30-59.02 tonnes/ha in the very high density class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用哨兵-2A 图像估算西龙目岛拉邦特伦红树林地区的林分碳储量
解决气候变化问题的首要问题是大气中二氧化碳排放量的增加导致全球气温升高。红树林生态系统为 "蓝碳 "计划做出了贡献,能够很好地储存碳。本研究通过将哨兵-2A 卫星图像与现场实地测量相结合,对红树林生态系统的碳储存进行了评估。数据分析结果表明,红树林有六种不同的类型,即 R. mucronata、A. marina、R. apiculata、S. alba、E. agallocha 和 C. decandra。R. mucronata 类型是红树林区域的主要类型,平均碳含量为 122.1 吨/公顷。相关分析表明,IKVm 与红树林碳储量关系密切,相关系数高达 80%。在回归模型中,幂模型提供了估算碳储量的最佳方程,其决定系数为 64.4%,模型方程为 y=109.51x1.2381。图像碳储量分析得出的最低值为 0.02-10.46 吨/公顷,属于极稀有植被密度类型,最高碳储量值为 58.30-59.02 吨/公顷,属于极高密度类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potensi Ekstrak Spirulina sp. Sebagai Imunostimulan Pada Bidang Akuakultur Pengaruh Pemberian Biochar Terhadap Perubahan Sifat Kimia Tanah Vertisol dan Pertumbuhan Kacang Hijau (Vigna radiata L.) Understanding Enabling Factors for Community-Led Coral Reef Health Monitoring and Early Warning System through Participatory Action Research Estimasi Emisi Gas Rumah Kaca (GRK) di TPA Benowo Menggunakan Model LandGem Potensi Cemaran Kandungan Minyak Lemak (Oil and Grease) Limbah Cair PT. Perikanan Sejahtera dan PT. Tuban Kretek Maju Di Kabupaten Tuban, Jawa Timur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1