Development of FEM thermal simulation technology for machine tool with enclosures and application

Q2 Engineering Journal of Machine Engineering Pub Date : 2023-12-28 DOI:10.36897/jme/176716
I. Tanabe, Naohiko Suzuki, Yoshiaki Ishino, Hiromi Isobe
{"title":"Development of FEM thermal simulation technology for machine tool with enclosures and application","authors":"I. Tanabe, Naohiko Suzuki, Yoshiaki Ishino, Hiromi Isobe","doi":"10.36897/jme/176716","DOIUrl":null,"url":null,"abstract":"These days, most machine tools are interlocked by an enclosure for safety control. At that time, internal heat generation in machine tools first causes thermal deformation of the machine structure, which reduces the machining accuracy of the workpiece. Furthermore, the internal heat generation heats the air inside the enclosure, causing a heat build-up phenomenon, and the trapped heat causes re-thermal deformation of the machine tool structure. As a result, machine tools with enclosures are subject to extremely complex thermal deformation. On the other hand, we would like to use FEM thermal simulation to study thermal deformation countermeasures for machine tools with enclosures at the design stage, but it is difficult to analyse the heat build-up phenomenon using conventional FEM thermal simulation. In this research, the new FEM thermal simulation technology for the heat build-up phenomenon was developed and heat build-up phenomenon in a CNC lathe with enclosure was calculated using the proposed FEM simulation technology. As a result, it had been concluded that the proposed FEM simulation could calculate with high accuracy for the phenomenon of heat build-up in a CNC lathe with enclosure, and the proposed technology is very effective in the design.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/176716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

These days, most machine tools are interlocked by an enclosure for safety control. At that time, internal heat generation in machine tools first causes thermal deformation of the machine structure, which reduces the machining accuracy of the workpiece. Furthermore, the internal heat generation heats the air inside the enclosure, causing a heat build-up phenomenon, and the trapped heat causes re-thermal deformation of the machine tool structure. As a result, machine tools with enclosures are subject to extremely complex thermal deformation. On the other hand, we would like to use FEM thermal simulation to study thermal deformation countermeasures for machine tools with enclosures at the design stage, but it is difficult to analyse the heat build-up phenomenon using conventional FEM thermal simulation. In this research, the new FEM thermal simulation technology for the heat build-up phenomenon was developed and heat build-up phenomenon in a CNC lathe with enclosure was calculated using the proposed FEM simulation technology. As a result, it had been concluded that the proposed FEM simulation could calculate with high accuracy for the phenomenon of heat build-up in a CNC lathe with enclosure, and the proposed technology is very effective in the design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机床外壳有限元热模拟技术的开发与应用
如今,大多数机床都通过外壳联锁进行安全控制。此时,机床内部产生的热量首先会导致机床结构发生热变形,从而降低工件的加工精度。此外,内部发热还会加热外壳内的空气,造成热量积聚现象,滞留的热量会导致机床结构再次发生热变形。因此,带外壳的机床会产生极其复杂的热变形。另一方面,我们希望在设计阶段就利用有限元热模拟来研究带外壳机床的热变形对策,但传统的有限元热模拟很难分析热积聚现象。本研究开发了针对热积聚现象的新型有限元热模拟技术,并利用所提出的有限元模拟技术计算了带外壳数控车床的热积聚现象。结果表明,所提出的有限元模拟能够高精度地计算带外壳数控车床中的热积聚现象,而且所提出的技术在设计中非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1