Two-dimensional investigation of characteristics parameters and their gradients for the self-generated electric and magnetic fields of laser-induced zirconium plasma
Tayyba Sajid, S. Bashir, M. Akram, M. Razzaq, K. Mahmood
{"title":"Two-dimensional investigation of characteristics parameters and their gradients for the self-generated electric and magnetic fields of laser-induced zirconium plasma","authors":"Tayyba Sajid, S. Bashir, M. Akram, M. Razzaq, K. Mahmood","doi":"10.1088/2058-6272/ad197f","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2-D) diagnosis of laser-induced zirconium (Zr) plasma has been experimentally performed using the Time-Of-Flight (TOF) method by employing Faraday cups (FCs), and electric and magnetic probes. The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm−2 at different axial positions of 1cm–4 cm with a fixed radial distance of 2 cm. A well-supporting correlation between plume parameters and laser-plasma-produced spontaneous electric and magnetic (E and B) fields has been established. The measurements of characteristic parameters and spontaneously induced fields are observed to have an increasing trend with increasing laser irradiance. Whereas, with increasing spatial distances in both axial and radial directions, plasma parameters (electron/ion number density, temperature and kinetic energy) do not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during spatial evolution of plume. However, the E and B fields are observed to be always diffusing away from the target. The radial component of electron number densities remains higher than the axial number density component, whereas, axial ion number density at all laser irradiances and axial distances remains higher than radial ion number density. The higher axial Self-Generated Electric Field (SGEF) values than radial SGEF are correlated with the effective charge-separation mechanism of electrons and ions. The generation of Self-Generated Magnetic Field (SGMF) is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and persistence of Two-Electron Temperature (TET) on the radial axis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad197f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2-D) diagnosis of laser-induced zirconium (Zr) plasma has been experimentally performed using the Time-Of-Flight (TOF) method by employing Faraday cups (FCs), and electric and magnetic probes. The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm−2 at different axial positions of 1cm–4 cm with a fixed radial distance of 2 cm. A well-supporting correlation between plume parameters and laser-plasma-produced spontaneous electric and magnetic (E and B) fields has been established. The measurements of characteristic parameters and spontaneously induced fields are observed to have an increasing trend with increasing laser irradiance. Whereas, with increasing spatial distances in both axial and radial directions, plasma parameters (electron/ion number density, temperature and kinetic energy) do not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during spatial evolution of plume. However, the E and B fields are observed to be always diffusing away from the target. The radial component of electron number densities remains higher than the axial number density component, whereas, axial ion number density at all laser irradiances and axial distances remains higher than radial ion number density. The higher axial Self-Generated Electric Field (SGEF) values than radial SGEF are correlated with the effective charge-separation mechanism of electrons and ions. The generation of Self-Generated Magnetic Field (SGMF) is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and persistence of Two-Electron Temperature (TET) on the radial axis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.