M. Zamarreño Suárez, Juan Marín Martínez, F. Pérez Moreno, Raquel Delgado-Aguilera Jurado, Patricia María López de Frutos, R. A. Arnaldo Valdés
{"title":"From Raw Data to Practical Application: EEG Parameters for Human Performance Studies in Air Traffic Control","authors":"M. Zamarreño Suárez, Juan Marín Martínez, F. Pérez Moreno, Raquel Delgado-Aguilera Jurado, Patricia María López de Frutos, R. A. Arnaldo Valdés","doi":"10.3390/aerospace11010030","DOIUrl":null,"url":null,"abstract":"The use of electroencephalography (EEG) techniques has many advantages in the study of human performance in air traffic control (ATC). At present, these are non-intrusive techniques that allow large volumes of data to be recorded on a continuous basis using wireless equipment. To achieve the most with these techniques, it is essential to establish appropriate EEG parameters with a clear understanding of the process followed to obtain them and their practical application. This study explains, step by step, the approach adopted to obtain six EEG parameters: excitement, stress, boredom, relaxation, engagement, and attention. It then explains all the steps involved in analysing the relationship between these parameters and two other parameters that characterise the state of the air traffic control sector during the development of real-time simulations (RTS): taskload and number of simultaneous aircraft. For this case study, the results showed the highest relationships for the engagement and attention parameters. In general, the results confirmed the potential of using these EEG parameters.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"288 8‐9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The use of electroencephalography (EEG) techniques has many advantages in the study of human performance in air traffic control (ATC). At present, these are non-intrusive techniques that allow large volumes of data to be recorded on a continuous basis using wireless equipment. To achieve the most with these techniques, it is essential to establish appropriate EEG parameters with a clear understanding of the process followed to obtain them and their practical application. This study explains, step by step, the approach adopted to obtain six EEG parameters: excitement, stress, boredom, relaxation, engagement, and attention. It then explains all the steps involved in analysing the relationship between these parameters and two other parameters that characterise the state of the air traffic control sector during the development of real-time simulations (RTS): taskload and number of simultaneous aircraft. For this case study, the results showed the highest relationships for the engagement and attention parameters. In general, the results confirmed the potential of using these EEG parameters.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.