Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression

Farah Yuki, Dewanto Prasetyawati, Ahmad Harjunowibowo, Bayu Fauzi, Utomo Dani, Harmanto, D. Harjunowibowo, Ahmad Fauzi, Dani Harmanto
{"title":"Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression","authors":"Farah Yuki, Dewanto Prasetyawati, Ahmad Harjunowibowo, Bayu Fauzi, Utomo Dani, Harmanto, D. Harjunowibowo, Ahmad Fauzi, Dani Harmanto","doi":"10.53799/ajse.v22i3.595","DOIUrl":null,"url":null,"abstract":"Electricity demand which increases up to 2.7%, needs to be evaluated to prevent power wastage. This paper proposes an INA219 sensor and a power monitoring solution based on the ESP8266. Power Monitoring stores and displays real-time data in Google Sheets via Blynk version 1.0.1. The system has been calibrated with a fixed LED and resistor as a voltage calibration load. Meanwhile, the lamp and shunt resistors calibrate the shunt voltage. The measuring tools for comparison in calibration are digital multimeters, oscilloscopes, and power data loggers. Calibration using the linear regression technique with accuracy, precision, and uncertainty analysis are determined by Mean Absolute Percent Error (MAPE), Relative Standard Deviation (RSD), and Gaussian distribution. Successively, the sensor coefficient of determination (R2), accuracy, precision, and uncertainty of the load voltage and shunt voltage are 0.999 and 0.997, 99.27% ​​and 93.71%, 99.82% and 99.55%,  0.37 V and 0.89 mV.","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v22i3.595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electricity demand which increases up to 2.7%, needs to be evaluated to prevent power wastage. This paper proposes an INA219 sensor and a power monitoring solution based on the ESP8266. Power Monitoring stores and displays real-time data in Google Sheets via Blynk version 1.0.1. The system has been calibrated with a fixed LED and resistor as a voltage calibration load. Meanwhile, the lamp and shunt resistors calibrate the shunt voltage. The measuring tools for comparison in calibration are digital multimeters, oscilloscopes, and power data loggers. Calibration using the linear regression technique with accuracy, precision, and uncertainty analysis are determined by Mean Absolute Percent Error (MAPE), Relative Standard Deviation (RSD), and Gaussian distribution. Successively, the sensor coefficient of determination (R2), accuracy, precision, and uncertainty of the load voltage and shunt voltage are 0.999 and 0.997, 99.27% ​​and 93.71%, 99.82% and 99.55%,  0.37 V and 0.89 mV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用线性回归校准和验证作为传感器功率监控系统的 INA219
电力需求增长高达 2.7%,需要对电力需求进行评估,以防止电力浪费。本文提出了一种基于 ESP8266 的 INA219 传感器和电力监控解决方案。电力监控系统通过 Blynk 1.0.1 版在 Google Sheets 中存储和显示实时数据。系统使用固定的 LED 和电阻作为电压校准负载进行校准。同时,灯管和分流电阻校准分流电压。校准中用于比较的测量工具是数字万用表、示波器和功率数据记录器。校准采用线性回归技术,准确度、精确度和不确定性分析由平均绝对百分比误差 (MAPE)、相对标准偏差 (RSD) 和高斯分布确定。负载电压和分流电压的传感器判定系数(R2)、准确度、精确度和不确定性分别为 0.999 和 0.997、99.27% 和 93.71%、99.82% 和 99.55%、0.37 V 和 0.89 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Prediction of A Power Generation Gas Turbine Using An Optimized Artificial Neural Network Model Advancing Fuzzy Logic: A Hierarchical Fuzzy System Approach WVEHDD: Weighted Voting based Ensemble System for Heart Disease Detection Predictions of Malaysia Age-Specific Fertility Rates using the Lee-Carter and the Functional Data Approaches Performance Analysis of Automatic Generation Control for a Multi-Area Interconnected System Using Genetic Algorithm and Particle Swarm Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1