Novel Magnetism and Band Gap Tailoring in N-doped CdS:Cr Nanocomposites for Optomagnetic Applications

IF 0.3 Q4 CHEMISTRY, MULTIDISCIPLINARY Oriental Journal Of Chemistry Pub Date : 2023-12-27 DOI:10.13005/ojc/390620
Surya Sekhar Reddy M, Kishore Kumar Y B
{"title":"Novel Magnetism and Band Gap Tailoring in N-doped CdS:Cr Nanocomposites for Optomagnetic Applications","authors":"Surya Sekhar Reddy M, Kishore Kumar Y B","doi":"10.13005/ojc/390620","DOIUrl":null,"url":null,"abstract":"Nitrogen and chromium co-doped cadmium sulfide nanocomposites (NCps) were successfully synthesized using a simple co-precipitation method (Cpm). To evaluate their structural attributes, X-ray diffraction (XRD) analysis, conducted with X’pert high score plus software, confirmed the composite nature and established their particle size within the nano range, measuring between 1 to 1.6 nm. Further characterization, employing Fourier transform infrared spectroscopy (FTIR) confirms the presence of Cr and N. The energy dispersive X- ray spectroscopy (EDX) provided compelling evidence of the integration of chromium and nitrogen into the CdS host matrix. An interesting outcome of the UV-VIS diffused reflectance spectra (DRS) analysis was the significant blue shift observed in the band gap resulting from the introduction of chromium, accompanied by a Burstein-Moss effect, leading to a red shift as the nitrogen concentration increased. The intense green light emission witnessed in photoluminescence (PL) studies was associated with the trapping of nitrogen and Cr2+ within F- centers. Moreover, vibrating sample magnetometer (VSM) investigations unveiled distinct magnetic behaviors of the nanocomposites, particularly at low magnetic fields. These findings reveal a potential for tailoring band gaps and presenting novel magnetic properties, which could hold substantial promise for applications in optomagnetic and spintronic smart devices.","PeriodicalId":19599,"journal":{"name":"Oriental Journal Of Chemistry","volume":"17 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental Journal Of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojc/390620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen and chromium co-doped cadmium sulfide nanocomposites (NCps) were successfully synthesized using a simple co-precipitation method (Cpm). To evaluate their structural attributes, X-ray diffraction (XRD) analysis, conducted with X’pert high score plus software, confirmed the composite nature and established their particle size within the nano range, measuring between 1 to 1.6 nm. Further characterization, employing Fourier transform infrared spectroscopy (FTIR) confirms the presence of Cr and N. The energy dispersive X- ray spectroscopy (EDX) provided compelling evidence of the integration of chromium and nitrogen into the CdS host matrix. An interesting outcome of the UV-VIS diffused reflectance spectra (DRS) analysis was the significant blue shift observed in the band gap resulting from the introduction of chromium, accompanied by a Burstein-Moss effect, leading to a red shift as the nitrogen concentration increased. The intense green light emission witnessed in photoluminescence (PL) studies was associated with the trapping of nitrogen and Cr2+ within F- centers. Moreover, vibrating sample magnetometer (VSM) investigations unveiled distinct magnetic behaviors of the nanocomposites, particularly at low magnetic fields. These findings reveal a potential for tailoring band gaps and presenting novel magnetic properties, which could hold substantial promise for applications in optomagnetic and spintronic smart devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光磁应用的 N 掺杂 CdS:Cr 纳米复合材料中的新型磁性和带隙裁剪
采用简单的共沉淀法(Cpm)成功合成了氮和铬共掺杂硫化镉纳米复合材料(NCps)。为了评估其结构属性,使用 X'pert 高分辨率软件进行了 X 射线衍射(XRD)分析,确认了其复合性质,并确定其粒度在纳米范围内,在 1 至 1.6 纳米之间。能量色散 X 射线光谱(EDX)提供了铬和氮融入 CdS 主基质的有力证据。紫外-可见光漫反射光谱(DRS)分析的一个有趣结果是,由于铬的引入,在带隙中观察到明显的蓝移,同时伴有伯斯坦-莫斯效应,随着氮浓度的增加而导致红移。光致发光(PL)研究中观察到的强烈绿光发射与氮和 Cr2+ 在 F- 中心的捕获有关。此外,振动样品磁力计(VSM)研究揭示了纳米复合材料的独特磁性,尤其是在低磁场下。这些发现揭示了定制带隙和呈现新型磁性能的潜力,为光磁和自旋电子智能设备的应用带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oriental Journal Of Chemistry
Oriental Journal Of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
20.00%
发文量
172
期刊介绍: Oriental Journal of Chemistry was started in 1985 with the aim to promote chemistry research. The journal consists of articles which are rigorously peer-reviewed. The journal was indexed in Emerging Science citation index in 2016. The Editorial board member consists of eminent international scientist in all fields of Chemistry. Details of each member and their contact information is mentioned in website. The journal has thorough ethics policies and uses plagiarism detection software(ithenticate) to screen each submission. The journal has recently partnered with publons as a part of making our reviews more transparent. The journal has recently incorporated PlumX for article level matrix. The journal is promoting research on all social and academic platforms mentioned in PlumX guidelines. The journal uses google maps to improve on the geographical distribution of Editorial board members as well as authors.
期刊最新文献
Bi-functional Cold Brand Reactive Dyes with Urea as a Bridge Group: Synthesis, Characterization and Dyeing Performance on Various Fibers. Kinetic Study and Hammett Correlations in the Chemistry of M-Nitro and M-Amino Benzoic Acid Hydrazides by Using Thallium (Iii) in 1,4-Dioxane Medium Preparation and Characterization of Organosiloxanes with A Liquid Crystalline Trans-4-Pentylcyclohexanoate Moiety Discovery of New Isoniazid Derivatives As Anti-tubercular Agents: In silico Studies, Synthesis, and In vitro Activity Evaluation Structural and Functional Dynamics of Secondary Metabolite from Actinokineospora cibodasensis against Pseudomonas aeruginosa Biofilm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1