Yahui Li, Jing-yi Li, Hang Dong, Wei Zhang, Guangyong Jin
{"title":"Simulation and Experimental Study of Nanosecond Pulse Laser Removal of Epoxy Paint on 6061 Aluminum Alloy Surface","authors":"Yahui Li, Jing-yi Li, Hang Dong, Wei Zhang, Guangyong Jin","doi":"10.3390/photonics11010025","DOIUrl":null,"url":null,"abstract":"Laser paint removal is a new cleaning technology that mainly removes paint through thermal ablation and mechanical stripping mechanisms. This paper established a thermal-mechanical coupling laser removal model of paint based on the heat conduction equation, Newton’s second law, and Fabbro’s theory. The removal process of epoxy resin paint film on an aluminum alloy surface via a nanosecond pulsed laser was studied using finite element simulations and experimental measurements. The simulation and experimental results show that the nanosecond pulse laser’s primary paint removal mechanism is the mechanical stripping caused by thermal stress and plasma shock. The laser paint removal threshold is 1.4 J/cm2. In addition, due to the different generation times of plasma shock and thermal stress, the mutual superposition of stress waves occurs in the material. This results in a discrepancy between the actual and thermal stress differences. Moreover, the thermal stress difference causes the maximum actual stress difference to fluctuate. The simulation model established in this paper can provide a reference for studying the thermal-mechanical coupling process of laser paint removal.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"91 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010025","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Laser paint removal is a new cleaning technology that mainly removes paint through thermal ablation and mechanical stripping mechanisms. This paper established a thermal-mechanical coupling laser removal model of paint based on the heat conduction equation, Newton’s second law, and Fabbro’s theory. The removal process of epoxy resin paint film on an aluminum alloy surface via a nanosecond pulsed laser was studied using finite element simulations and experimental measurements. The simulation and experimental results show that the nanosecond pulse laser’s primary paint removal mechanism is the mechanical stripping caused by thermal stress and plasma shock. The laser paint removal threshold is 1.4 J/cm2. In addition, due to the different generation times of plasma shock and thermal stress, the mutual superposition of stress waves occurs in the material. This results in a discrepancy between the actual and thermal stress differences. Moreover, the thermal stress difference causes the maximum actual stress difference to fluctuate. The simulation model established in this paper can provide a reference for studying the thermal-mechanical coupling process of laser paint removal.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.