{"title":"Multi-Wall Carbon Nanotubes with NiO and pt as Counter Electrodes for DSSC applications","authors":"H. Ali","doi":"10.32792/utq/utjsci/v10i2.1124","DOIUrl":null,"url":null,"abstract":"NiO-MWCNT was synthesized using the hydrothermal method and used as a low-cost, platinum-free counter electrode for Dye-sensitized solar cells DSSCs. The DSSC based on NiO-MWCNT as a counter electrode achieves a high-power conversion efficiency of 8.53% under a simulated solar illumination of 100 mW cm-2 (AM 1.5). This efficiency is comparable to 7.9% for a DSSC equipped with a Pt counter electrode. Good charge conduction characteristics of the NiO-MWCNT electrode decreases charge loss and boosts the effectiveness of converting light into electrical current. The NiO-MWCNT electrode also increases light absorption and increases the efficiency of converting light energy into electrical energy by enhancing light dispersion within the solar cell. Other advantages of NiO-MWCNT electrodes are low cost and great sustainability. Comparing it to platinum, rare and expensive material, the use of NiO-MWCNT reduces the cost of the solar cell and contributes to environmental sustainability. In addition, the NiO-MWCNT electrode has a high chemical stability, making it more resistant to corrosion and damage in dye solar cell environments. This enhances the lifespan of the cell and ensures its long-term sustainability.","PeriodicalId":23432,"journal":{"name":"University of Thi-Qar Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Thi-Qar Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32792/utq/utjsci/v10i2.1124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
NiO-MWCNT was synthesized using the hydrothermal method and used as a low-cost, platinum-free counter electrode for Dye-sensitized solar cells DSSCs. The DSSC based on NiO-MWCNT as a counter electrode achieves a high-power conversion efficiency of 8.53% under a simulated solar illumination of 100 mW cm-2 (AM 1.5). This efficiency is comparable to 7.9% for a DSSC equipped with a Pt counter electrode. Good charge conduction characteristics of the NiO-MWCNT electrode decreases charge loss and boosts the effectiveness of converting light into electrical current. The NiO-MWCNT electrode also increases light absorption and increases the efficiency of converting light energy into electrical energy by enhancing light dispersion within the solar cell. Other advantages of NiO-MWCNT electrodes are low cost and great sustainability. Comparing it to platinum, rare and expensive material, the use of NiO-MWCNT reduces the cost of the solar cell and contributes to environmental sustainability. In addition, the NiO-MWCNT electrode has a high chemical stability, making it more resistant to corrosion and damage in dye solar cell environments. This enhances the lifespan of the cell and ensures its long-term sustainability.