A Simplified Chemical Reactor Network Approach for Aeroengine Combustion Chamber Modeling and Preliminary Design

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE Aerospace Pub Date : 2023-12-26 DOI:10.3390/aerospace11010022
Sergios Villette, Dimitris Adam, A. Alexiou, N. Aretakis, K. Mathioudakis
{"title":"A Simplified Chemical Reactor Network Approach for Aeroengine Combustion Chamber Modeling and Preliminary Design","authors":"Sergios Villette, Dimitris Adam, A. Alexiou, N. Aretakis, K. Mathioudakis","doi":"10.3390/aerospace11010022","DOIUrl":null,"url":null,"abstract":"In a time when low emission solutions and technologies are of utmost importance regarding the sustainability of the aviation sector, this publication introduces a reduced-order physics-based model for combustion chambers of aeroengines, which is capable of reliably producing accurate pollutant emission and combustion efficiency estimations. The burner is subdivided into three volumes, with each represented by a single perfectly stirred reactor, thereby resulting in a simplified three-element serial chemical reactor network configuration, reducing complexity, and promoting the generality and ease of use of the model, without requiring the proprietary engine information needed by other such models. A tuning method is proposed to circumvent the limitations of its simplified configuration and the lack of detailed geometric data for combustors in literature. In contrast to most similar frameworks, this also provides the model with the ability to simultaneously predict the combustion efficiency and all pollutant emissions of interest (NOx, CO and unburnt hydrocarbons) more effectively by means of implementing a detailed chemical kinetics model. Validation against three correlation methods and actual aeroengine configurations demonstrates accurate performance and emission trend predictions. Integrated within two distinct combustion chamber low-emission preliminary design processes, the proposed model evaluates each new design, thereby displaying the ability to be employed in terms of optimizing a combustor’s overall performance given its sensitivity to geometric changes. Overall, the proposed model proves its worth as a reliable and valuable tool for use towards a greener future in aviation.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"23 51","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010022","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In a time when low emission solutions and technologies are of utmost importance regarding the sustainability of the aviation sector, this publication introduces a reduced-order physics-based model for combustion chambers of aeroengines, which is capable of reliably producing accurate pollutant emission and combustion efficiency estimations. The burner is subdivided into three volumes, with each represented by a single perfectly stirred reactor, thereby resulting in a simplified three-element serial chemical reactor network configuration, reducing complexity, and promoting the generality and ease of use of the model, without requiring the proprietary engine information needed by other such models. A tuning method is proposed to circumvent the limitations of its simplified configuration and the lack of detailed geometric data for combustors in literature. In contrast to most similar frameworks, this also provides the model with the ability to simultaneously predict the combustion efficiency and all pollutant emissions of interest (NOx, CO and unburnt hydrocarbons) more effectively by means of implementing a detailed chemical kinetics model. Validation against three correlation methods and actual aeroengine configurations demonstrates accurate performance and emission trend predictions. Integrated within two distinct combustion chamber low-emission preliminary design processes, the proposed model evaluates each new design, thereby displaying the ability to be employed in terms of optimizing a combustor’s overall performance given its sensitivity to geometric changes. Overall, the proposed model proves its worth as a reliable and valuable tool for use towards a greener future in aviation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于航空发动机燃烧室建模和初步设计的简化化学反应器网络方法
在低排放解决方案和技术对航空业的可持续发展至关重要的今天,本出版物介绍了一种基于物理的航空发动机燃烧室简化模型,该模型能够可靠地进行精确的污染物排放和燃烧效率估算。燃烧器被细分为三个容积,每个容积由一个完全搅拌反应器表示,从而简化了三元素串联化学反应器网络配置,降低了复杂性,提高了模型的通用性和易用性,而不需要其他此类模型所需的发动机专有信息。该模型提出了一种调整方法,以规避其简化配置的局限性和文献中燃烧器详细几何数据的缺乏。与大多数类似框架不同的是,通过实施详细的化学动力学模型,该模型还能更有效地同时预测燃烧效率和所有相关污染物排放(氮氧化物、一氧化碳和未燃烧碳氢化合物)。根据三种相关方法和实际的航空发动机配置进行的验证表明,性能和排放趋势预测准确无误。在两个不同的燃烧室低排放初步设计过程中,所提出的模型对每种新设计进行了评估,从而显示了在优化燃烧器整体性能方面的应用能力,因为它对几何变化非常敏感。总之,所提出的模型证明了其作为一个可靠和有价值的工具的价值,可用于实现航空业更加绿色的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
期刊最新文献
Continuum Modeling and Boundary Control of a Satellite with a Large Space Truss Structure Topology Optimization of a Single-Point Diamond-Turning Fixture for a Deployable Primary Mirror Telescope Coupled Aerodynamics–Structure Analysis and Wind Tunnel Experiments on Passive Hinge Oscillation of Wing-Tip-Chained Airplanes A Study for a Radio Telescope in Indonesia: Parabolic Design, Simulation of a Horn Antenna, and Radio Frequency Survey in Frequency of 0.045–18 GHz Decision Science-Driven Assessment of Ti Alloys for Aircraft Landing Gear Beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1