Applied Electric Fields Polarize Initiation and Growth of Endothelial Sprouts

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-12-23 DOI:10.1155/2023/6331148
Anyesha Sarkar, Shanta M. Messerli, Md Moin Uddin Talukder, M. Messerli
{"title":"Applied Electric Fields Polarize Initiation and Growth of Endothelial Sprouts","authors":"Anyesha Sarkar, Shanta M. Messerli, Md Moin Uddin Talukder, M. Messerli","doi":"10.1155/2023/6331148","DOIUrl":null,"url":null,"abstract":"Therapeutic electric fields (EFs) are applied to the epidermis to accelerate the healing of chronic epidermal wounds and promote skin transplantation. While research has emphasized understanding the role of EFs in polarizing the migration of superficial epidermal cells, there are no reports describing the effect of EFs on polarization of the underlying vasculature. We explored the effects of EFs on the growth of endothelial sprouts, precursors to functional blood vessels. We discovered that DC EFs of the same magnitude near wounded epidermis polarize initiation, growth, and turning of endothelial sprouts toward the anode. While EFs polarize sprouts, they do not change the frequency of primary sprout or branch formation. Unidirectional electrical pulses also polarize sprouts based on their time-averaged EF magnitude. Sprout polarization occurs antiparallel to the direction of electrically driven water flow (electro-osmosis) and is consistent with the direction of sprout polarization induced by pressure-driven flow. These results support the role of EFs in controlling the direction of neovascularization during the healing of soft tissues and tissue engineering.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"55 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6331148","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Therapeutic electric fields (EFs) are applied to the epidermis to accelerate the healing of chronic epidermal wounds and promote skin transplantation. While research has emphasized understanding the role of EFs in polarizing the migration of superficial epidermal cells, there are no reports describing the effect of EFs on polarization of the underlying vasculature. We explored the effects of EFs on the growth of endothelial sprouts, precursors to functional blood vessels. We discovered that DC EFs of the same magnitude near wounded epidermis polarize initiation, growth, and turning of endothelial sprouts toward the anode. While EFs polarize sprouts, they do not change the frequency of primary sprout or branch formation. Unidirectional electrical pulses also polarize sprouts based on their time-averaged EF magnitude. Sprout polarization occurs antiparallel to the direction of electrically driven water flow (electro-osmosis) and is consistent with the direction of sprout polarization induced by pressure-driven flow. These results support the role of EFs in controlling the direction of neovascularization during the healing of soft tissues and tissue engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外加电场极化内皮萌芽的启动和生长
治疗性电场(EF)被应用于表皮,以加速慢性表皮伤口的愈合并促进皮肤移植。虽然研究强调了解电场在极化表皮细胞迁移中的作用,但还没有报告描述电场对底层血管极化的影响。我们探讨了 EFs 对内皮芽(功能性血管的前体)生长的影响。我们发现,受伤表皮附近同等强度的直流环流可极化内皮萌芽的启动、生长和转向阳极。虽然直流电极化了萌芽,但并没有改变初级萌芽或分支形成的频率。单向电脉冲也会根据其时间平均 EF 幅值极化萌芽。萌芽极化与电驱动水流(电渗)的方向相反,与压力驱动水流诱导的萌芽极化方向一致。这些结果支持 EF 在软组织愈合和组织工程中控制新生血管方向的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1