A parallel convolutional neural network-transformer model for underwater target recognition based on multimodal feature learning

Xuerong Cui, Qingqing Zheng, Juan Li, Binbin Jiang, Shibao Li, Jianhang Liu
{"title":"A parallel convolutional neural network-transformer model for underwater target recognition based on multimodal feature learning","authors":"Xuerong Cui, Qingqing Zheng, Juan Li, Binbin Jiang, Shibao Li, Jianhang Liu","doi":"10.1177/14750902231215410","DOIUrl":null,"url":null,"abstract":"Underwater acoustic target recognition is a hot research issue with a wide range of applications. The variable ocean environment and evolving underwater moving target noise reduction techniques greatly complicate the recognition task. Traditional recognition methods are difficult to obtain practical characterization features and robust recognition results due to the singular input features and the limitation of the network backbone. Therefore, We propose a parallel convolutional neural network (CNN)-Transformer model based on multimodal feature learning for underwater target recognition. The CNN module extracts deep features from the Mel-Frequency Cepstral Coefficients (MFCCs). The Transformer captures global information in the original time-domain signal. The two single-modal features are combined by an adaptive feature fusion module to construct joint features for target recognition. The effectiveness of the proposed method was verified in the Ships-Ear dataset, and the average accuracy of classification reached 98.58%. The experimental results show that our model works better than classical methods.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"93 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231215410","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater acoustic target recognition is a hot research issue with a wide range of applications. The variable ocean environment and evolving underwater moving target noise reduction techniques greatly complicate the recognition task. Traditional recognition methods are difficult to obtain practical characterization features and robust recognition results due to the singular input features and the limitation of the network backbone. Therefore, We propose a parallel convolutional neural network (CNN)-Transformer model based on multimodal feature learning for underwater target recognition. The CNN module extracts deep features from the Mel-Frequency Cepstral Coefficients (MFCCs). The Transformer captures global information in the original time-domain signal. The two single-modal features are combined by an adaptive feature fusion module to construct joint features for target recognition. The effectiveness of the proposed method was verified in the Ships-Ear dataset, and the average accuracy of classification reached 98.58%. The experimental results show that our model works better than classical methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模态特征学习的水下目标识别并行卷积神经网络-变换器模型
水下声学目标识别是一个应用广泛的热门研究课题。多变的海洋环境和不断发展的水下移动目标降噪技术使识别任务变得非常复杂。由于输入特征的单一性和网络骨干的局限性,传统的识别方法很难获得实用的表征特征和稳健的识别结果。因此,我们提出了一种基于多模态特征学习的并行卷积神经网络(CNN)-变换器模型,用于水下目标识别。CNN 模块从 Mel-Frequency Cepstral Coefficients (MFCC) 中提取深度特征。变换器捕捉原始时域信号中的全局信息。自适应特征融合模块将两种单模态特征结合起来,构建用于目标识别的联合特征。在 Ships-Ear 数据集中验证了所提方法的有效性,分类的平均准确率达到 98.58%。实验结果表明,我们的模型比传统方法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
期刊最新文献
Integrated design method for protection against vibration of offshore platform plate structure A grouping module assessment method for ocean engineering systems: Subsea tree system as a case Effect of pre-swirl stator angles on broadband noise considering hydrodynamic performance of pump-jet propeller Effect of preload scatter on fatigue life of subsea pipeline connector bolts located at suspended span section A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1