Design and numerical study of foldable wing module of air-launched underwater glider

Xiangcheng Wu, Qiang Wang, Pengyao Yu, Chengyu Zhang
{"title":"Design and numerical study of foldable wing module of air-launched underwater glider","authors":"Xiangcheng Wu, Qiang Wang, Pengyao Yu, Chengyu Zhang","doi":"10.1177/14750902231213441","DOIUrl":null,"url":null,"abstract":"Launching underwater gliders by aircraft could greatly expand the application of underwater gliders. However, during the process of the glider entry into the water, it will be subjected to significant impact loads, especially during the process of wing entry into the water. In this paper, a foldable wing module is proposed to reduce the water entry impact loads of the glider caused by the wings entering into the water. The effect of the foldable wing module on impact loads reduction and the influence of the foldable wing module on the water entry trajectory are studied by numerical method. The results show that the differences in mass and gravity center position caused by the foldable wing module have little effect on the water entry impact loads of the glider until the wings impact the water. When the glider enters the water obliquely, the wing module reduces the peak radial acceleration of the glider. In addition, the trajectory and time of the glider to reach the horizontal attitude are also reduced. These conclusions will be helpful for the designing of the wings of air-launched underwater gliders.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"68 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231213441","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Launching underwater gliders by aircraft could greatly expand the application of underwater gliders. However, during the process of the glider entry into the water, it will be subjected to significant impact loads, especially during the process of wing entry into the water. In this paper, a foldable wing module is proposed to reduce the water entry impact loads of the glider caused by the wings entering into the water. The effect of the foldable wing module on impact loads reduction and the influence of the foldable wing module on the water entry trajectory are studied by numerical method. The results show that the differences in mass and gravity center position caused by the foldable wing module have little effect on the water entry impact loads of the glider until the wings impact the water. When the glider enters the water obliquely, the wing module reduces the peak radial acceleration of the glider. In addition, the trajectory and time of the glider to reach the horizontal attitude are also reduced. These conclusions will be helpful for the designing of the wings of air-launched underwater gliders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空射水下滑翔机可折叠机翼模块的设计与数值研究
用飞机发射水下滑翔机可以大大扩展水下滑翔机的应用范围。然而,在滑翔机入水的过程中,会受到很大的冲击载荷,尤其是在机翼入水的过程中。本文提出了一种可折叠机翼模块,以减少机翼入水时对滑翔机造成的入水冲击载荷。通过数值方法研究了可折叠机翼模块对降低冲击载荷的作用以及可折叠机翼模块对入水轨迹的影响。结果表明,在机翼冲击水面之前,可折叠机翼模块造成的质量和重心位置差异对滑翔机的入水冲击载荷影响不大。当滑翔机斜着入水时,机翼模块会降低滑翔机的径向加速度峰值。此外,滑翔机到达水平姿态的轨迹和时间也会缩短。这些结论将有助于空射水下滑翔机机翼的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
期刊最新文献
Integrated design method for protection against vibration of offshore platform plate structure A grouping module assessment method for ocean engineering systems: Subsea tree system as a case Effect of pre-swirl stator angles on broadband noise considering hydrodynamic performance of pump-jet propeller Effect of preload scatter on fatigue life of subsea pipeline connector bolts located at suspended span section A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1