Proposal for Navigation System Using Three-Dimensional Maps—Self-Localization Using a 3D Map and Slope Detection Using a 2D Laser Range Finder and 3D Map

Pub Date : 2023-12-20 DOI:10.20965/jrm.2023.p1604
Neng Chen, S. Suga, Masato Suzuki, Tomokazu Takahashi, Yasushi Mae, Yasuhiko Arai, S. Aoyagi
{"title":"Proposal for Navigation System Using Three-Dimensional Maps—Self-Localization Using a 3D Map and Slope Detection Using a 2D Laser Range Finder and 3D Map","authors":"Neng Chen, S. Suga, Masato Suzuki, Tomokazu Takahashi, Yasushi Mae, Yasuhiko Arai, S. Aoyagi","doi":"10.20965/jrm.2023.p1604","DOIUrl":null,"url":null,"abstract":"Many teams participating in robotic competitions achieve localization using a 2D map plotted using adaptive Monte Carlo localization, a robot operating system (ROS) open-source software program. However, outdoor environments often include nonlevel terrain such as slopes. In the indoor environment of multilevel structures, the data representing different levels overlap on the map. These factors can lead to localization failures. To resolve this problem, we develop a software by combining HDL localization, which is an ROS open-source software, with our own program, and use it to achieve localization based on a 3D map. Furthermore, the authors observe the erroneous recognition of a slope as a forward obstacle during a competition event. To resolve this, we propose a method to correct erroneous recognition of obstacles using a 2D laser range finder and 3D map and confirm its validity in an experiment carried out on a slope on a university campus.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many teams participating in robotic competitions achieve localization using a 2D map plotted using adaptive Monte Carlo localization, a robot operating system (ROS) open-source software program. However, outdoor environments often include nonlevel terrain such as slopes. In the indoor environment of multilevel structures, the data representing different levels overlap on the map. These factors can lead to localization failures. To resolve this problem, we develop a software by combining HDL localization, which is an ROS open-source software, with our own program, and use it to achieve localization based on a 3D map. Furthermore, the authors observe the erroneous recognition of a slope as a forward obstacle during a competition event. To resolve this, we propose a method to correct erroneous recognition of obstacles using a 2D laser range finder and 3D map and confirm its validity in an experiment carried out on a slope on a university campus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
关于使用三维地图的导航系统的建议--使用三维地图进行自我定位以及使用二维激光测距仪和三维地图进行斜坡探测
许多参加机器人竞赛的团队都是利用机器人操作系统(ROS)开源软件程序自适应蒙特卡洛定位绘制的二维地图实现定位的。然而,室外环境通常包括斜坡等非水平地形。在多层结构的室内环境中,代表不同楼层的数据会在地图上重叠。这些因素都可能导致定位失败。为了解决这个问题,我们将 ROS 开源软件 HDL 本地化与我们自己的程序相结合,开发了一款软件,并利用它实现了基于三维地图的本地化。此外,作者还观察到在比赛中将斜坡错误地识别为前方障碍物的情况。为了解决这个问题,我们提出了一种利用二维激光测距仪和三维地图纠正错误障碍物识别的方法,并在大学校园的一个斜坡上进行了实验,证实了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1