Snowfall Measurements at Wind-exposed and Sheltered Sites in the Rocky Mountains of Southeastern Wyoming

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Applied Meteorology and Climatology Pub Date : 2023-12-18 DOI:10.1175/jamc-d-22-0093.1
Samuel A. Marlow, John M. Frank, Matthew Burkhart, Bujidmaa Borkhuu, Shelby E. Fuller, Jefferson R. Snider
{"title":"Snowfall Measurements at Wind-exposed and Sheltered Sites in the Rocky Mountains of Southeastern Wyoming","authors":"Samuel A. Marlow, John M. Frank, Matthew Burkhart, Bujidmaa Borkhuu, Shelby E. Fuller, Jefferson R. Snider","doi":"10.1175/jamc-d-22-0093.1","DOIUrl":null,"url":null,"abstract":"Snowfall is an important driver of physical and biological processes in alpine systems. Previous work has shown that surface deposition of snow can vary for reasons not directly related to precipitation processes and that this variance has consequence for water budgets in snow-dominated terrestrial systems. In this work, measurements were made over several winter seasons in a forest-meadow ecotone in the Rocky Mountains of Southeastern Wyoming. Two groups of measurements - both with wind-exposed and sheltered precipitation gauges - were analyzed. Reasonable agreement between snow deposition from a hotplate gauge (exposed) and snow deposition from a SNOTEL pillow gauge (sheltered) is reported. The other result is that snow deposition is enhanced at an exposed gauge that was deployed on the leeward side of a forest-meadow edge. The enhancement is approximately a factor of two and varies with wind direction and speed and with upwind forest coverage. The enhancement is greater than documented in an earlier investigation of Rocky Mountain snow deposition; however, in that study measurements were conducted above tree line.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"188 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0093.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Snowfall is an important driver of physical and biological processes in alpine systems. Previous work has shown that surface deposition of snow can vary for reasons not directly related to precipitation processes and that this variance has consequence for water budgets in snow-dominated terrestrial systems. In this work, measurements were made over several winter seasons in a forest-meadow ecotone in the Rocky Mountains of Southeastern Wyoming. Two groups of measurements - both with wind-exposed and sheltered precipitation gauges - were analyzed. Reasonable agreement between snow deposition from a hotplate gauge (exposed) and snow deposition from a SNOTEL pillow gauge (sheltered) is reported. The other result is that snow deposition is enhanced at an exposed gauge that was deployed on the leeward side of a forest-meadow edge. The enhancement is approximately a factor of two and varies with wind direction and speed and with upwind forest coverage. The enhancement is greater than documented in an earlier investigation of Rocky Mountain snow deposition; however, in that study measurements were conducted above tree line.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
怀俄明州东南部落基山脉受风和避风地点的降雪测量结果
降雪是高山系统物理和生物过程的重要驱动力。以往的研究表明,雪的地表沉积会因降水过程没有直接关系的原因而变化,这种变化会对以雪为主的陆地系统的水预算产生影响。在这项工作中,我们在怀俄明州东南部落基山脉的森林-草甸生态区进行了几个冬季的测量。对两组测量数据进行了分析,这两组数据分别使用了暴露在风中的降水测量仪和遮蔽式降水测量仪。报告显示,热板降水仪(暴露)和 SNOTEL 枕式降水仪(遮蔽)的降雪量之间存在合理的一致性。另一项结果是,部署在森林-草甸边缘背风侧的外露式测雪仪的积雪量增加了。增强程度约为 2 倍,随风向和风速以及上风森林覆盖率的变化而变化。这种增强比早先对落基山积雪沉降的调查所记录的要强;不过,在那次研究中,测量是在树线以上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
期刊最新文献
A Case Study on Wind Speed Oscillations Offshore the West Coast of Central Taiwan Investigation of Hydrostatic Imbalance with Field Observations Automated and Objective Thunderstorm Identification and Tracking Using Geostationary Lightning Mapper (GLM) Data Long Memory in Average Monthly Temperatures and Precipitations in Guatemala Contrasts of Large-Scale Moisture and Heat Budgets between Different Sea Areas of the South China Sea and the Adjacent Land
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1