Analysis of Performance Anomaly and Fraudster Profile for Fraud Prevention and Detection

Dona Ramadhan
{"title":"Analysis of Performance Anomaly and Fraudster Profile for Fraud Prevention and Detection","authors":"Dona Ramadhan","doi":"10.21532/apfjournal.v8i2.309","DOIUrl":null,"url":null,"abstract":"The rapid development of technology provides us with a lot of data that can be used for various purposes, such as fraud risk management. Data analytics should be the basis for anti-fraud activities related to prevention and detection processes. This study aims to elaborate on the data analytics used in developing fraud red flags based on historical reports. By applying anomaly data analytics and demographic profiles of fraudsters, this study finds that performance anomalies contribute 68% to fraud, while 3 to 10 years of service without career advancement can trigger motivation to commit fraud. Finally, the paper recommends that data analytics should be followed by human approaches such as lifestyle audits and career advancement programs. Further research is expected to be able to complement other parameters for data analysis and use statistical methods to obtain more accurate results.","PeriodicalId":251943,"journal":{"name":"Asia Pacific Fraud Journal","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pacific Fraud Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21532/apfjournal.v8i2.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of technology provides us with a lot of data that can be used for various purposes, such as fraud risk management. Data analytics should be the basis for anti-fraud activities related to prevention and detection processes. This study aims to elaborate on the data analytics used in developing fraud red flags based on historical reports. By applying anomaly data analytics and demographic profiles of fraudsters, this study finds that performance anomalies contribute 68% to fraud, while 3 to 10 years of service without career advancement can trigger motivation to commit fraud. Finally, the paper recommends that data analytics should be followed by human approaches such as lifestyle audits and career advancement programs. Further research is expected to be able to complement other parameters for data analysis and use statistical methods to obtain more accurate results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预防和检测欺诈的性能异常和欺诈者特征分析
技术的飞速发展为我们提供了大量可用于欺诈风险管理等各种目的的数据。数据分析应成为与预防和检测流程相关的反欺诈活动的基础。本研究旨在阐述根据历史报告制定欺诈红旗所使用的数据分析方法。通过应用异常数据分析和欺诈者的人口统计学特征,本研究发现,绩效异常对欺诈的贡献率为 68%,而 3 至 10 年的服务期没有职业晋升会引发欺诈动机。最后,论文建议,在进行数据分析的同时,应采取人性化的方法,如生活方式审计和职业发展计划。希望进一步的研究能够补充数据分析的其他参数,并使用统计方法获得更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Fraud Patterns in Islamic Banking Transactions: Strategies and Implementation of Prevention The Challenges of Anticorruption Education in Universities Evaluating the Impact of Digital Transformation and Sustainability Strategies on Earnings Management: A Text Mining Approach Corporate Governance as a Detector of Financial Statement Fraud: Systematic Literature Review Fraud Prevention in the Village Fund System: A Case Study in Marga Mulya Village, Tangerang
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1