Performance Evaluation of Maximum Ratio Combining Diversity Technology and Traditional System Based on Comprehensive Noise Analysis in Underwater Wireless Optical Communication
Weidong Zhang, Lulu Wang, Xiaying Wu, Li Fei, Han Peng, Ke Wen, Yanli Zhao
{"title":"Performance Evaluation of Maximum Ratio Combining Diversity Technology and Traditional System Based on Comprehensive Noise Analysis in Underwater Wireless Optical Communication","authors":"Weidong Zhang, Lulu Wang, Xiaying Wu, Li Fei, Han Peng, Ke Wen, Yanli Zhao","doi":"10.3390/photonics10121388","DOIUrl":null,"url":null,"abstract":"The maximum ratio combining (MRC) diversity technology has shown outstanding performance in overcoming the adverse effects of underwater wireless optical communication (UWOC) systems. However, its actual performance gain will be affected by the detection area and noise, which requires an in-depth analysis. In this paper, on the basis of fully considering the noises in the UWOC system, the performance of the MRC diversity technology is fairly and comprehensively studied by comparing it with two single-input–single-output (SISO) systems using a small aperture detection (SAD) scheme or a large-aperture detection (LAD) scheme through a Monte Carlo simulation and a formula analysis. The results show that the traditional belief that the MRC diversity scheme has consistently outperformed SISO systems may be misleading. When the thermal noise is dominant and the background noise is small, the LAD scheme performs better than the MRC diversity scheme with the same detection area. And in other cases, the MRC diversity scheme with the same detection area is always superior to the SISO systems. The conclusions obtained in this paper have a guiding significance for the practical application of UWOC.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"81 ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics10121388","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The maximum ratio combining (MRC) diversity technology has shown outstanding performance in overcoming the adverse effects of underwater wireless optical communication (UWOC) systems. However, its actual performance gain will be affected by the detection area and noise, which requires an in-depth analysis. In this paper, on the basis of fully considering the noises in the UWOC system, the performance of the MRC diversity technology is fairly and comprehensively studied by comparing it with two single-input–single-output (SISO) systems using a small aperture detection (SAD) scheme or a large-aperture detection (LAD) scheme through a Monte Carlo simulation and a formula analysis. The results show that the traditional belief that the MRC diversity scheme has consistently outperformed SISO systems may be misleading. When the thermal noise is dominant and the background noise is small, the LAD scheme performs better than the MRC diversity scheme with the same detection area. And in other cases, the MRC diversity scheme with the same detection area is always superior to the SISO systems. The conclusions obtained in this paper have a guiding significance for the practical application of UWOC.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.