EVALUATING THE RELATIONSHIPS BETWEEN GENETIC ANCESTRY AND THE CLINICAL PHENOME.

Jacqueline A. Piekos, Jeewoo Kim, Jacob M. Keaton, J. Hellwege, Todd L. Edwards, D. V. Velez Edwards
{"title":"EVALUATING THE RELATIONSHIPS BETWEEN GENETIC ANCESTRY AND THE CLINICAL PHENOME.","authors":"Jacqueline A. Piekos, Jeewoo Kim, Jacob M. Keaton, J. Hellwege, Todd L. Edwards, D. V. Velez Edwards","doi":"10.1142/9789811286421_0030","DOIUrl":null,"url":null,"abstract":"There is a desire in research to move away from the concept of race as a clinical factor because it is a societal construct used as an imprecise proxy for geographic ancestry. In this study, we leverage the biobank from Vanderbilt University Medical Center, BioVU, to investigate relationships between genetic ancestry proportion and the clinical phenome. For all samples in BioVU, we calculated six ancestry proportions based on 1000 Genomes references: eastern African (EAFR), western African (WAFR), northern European (NEUR), southern European (SEUR), eastern Asian (EAS), and southern Asian (SAS). From PheWAS, we found phecode categories significantly enriched neoplasms for EAFR, WAFR, and SEUR, and pregnancy complication in SEUR, NEUR, SAS, and EAS (p < 0.003). We then selected phenotypes hypertension (HTN) and atrial fibrillation (AFib) to further investigate the relationships between these phenotypes and EAFR, WAFR, SEUR, and NEUR using logistic regression modeling and non-linear restricted cubic spline modeling (RCS). For EAS and SAS, we chose renal failure (RF) for further modeling. The relationships between HTN and AFib and the ancestries EAFR, WAFR, and SEUR were best fit by the linear model (beta p < 1x10-4 for all) while the relationships with NEUR were best fit with RCS (HTN ANOVA p = 0.001, AFib ANOVA p < 1x10-4). For RF, the relationship with SAS was best fit with a linear model (beta p < 1x10-4) while RCS model was a better fit for EAS (ANOVA p < 1x10-4). In this study, we identify relationships between genetic ancestry and phenotypes that are best fit with non-linear modeling techniques. The assumption of linearity for regression modeling is integral for proper fitting of a model and there is no knowing a priori to modeling if the relationship is truly linear.","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"82 ","pages":"389-403"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811286421_0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

There is a desire in research to move away from the concept of race as a clinical factor because it is a societal construct used as an imprecise proxy for geographic ancestry. In this study, we leverage the biobank from Vanderbilt University Medical Center, BioVU, to investigate relationships between genetic ancestry proportion and the clinical phenome. For all samples in BioVU, we calculated six ancestry proportions based on 1000 Genomes references: eastern African (EAFR), western African (WAFR), northern European (NEUR), southern European (SEUR), eastern Asian (EAS), and southern Asian (SAS). From PheWAS, we found phecode categories significantly enriched neoplasms for EAFR, WAFR, and SEUR, and pregnancy complication in SEUR, NEUR, SAS, and EAS (p < 0.003). We then selected phenotypes hypertension (HTN) and atrial fibrillation (AFib) to further investigate the relationships between these phenotypes and EAFR, WAFR, SEUR, and NEUR using logistic regression modeling and non-linear restricted cubic spline modeling (RCS). For EAS and SAS, we chose renal failure (RF) for further modeling. The relationships between HTN and AFib and the ancestries EAFR, WAFR, and SEUR were best fit by the linear model (beta p < 1x10-4 for all) while the relationships with NEUR were best fit with RCS (HTN ANOVA p = 0.001, AFib ANOVA p < 1x10-4). For RF, the relationship with SAS was best fit with a linear model (beta p < 1x10-4) while RCS model was a better fit for EAS (ANOVA p < 1x10-4). In this study, we identify relationships between genetic ancestry and phenotypes that are best fit with non-linear modeling techniques. The assumption of linearity for regression modeling is integral for proper fitting of a model and there is no knowing a priori to modeling if the relationship is truly linear.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估遗传血统与临床表型之间的关系。
在研究中,人们希望摒弃将种族作为临床因素的概念,因为种族是一种社会结构,被用作地理血统的不精确替代物。在本研究中,我们利用范德比尔特大学医学中心的生物库(BioVU)来研究遗传血统比例与临床表型之间的关系。对于 BioVU 的所有样本,我们根据《1000 基因组》参考文献计算了六种祖先比例:非洲东部(EAFR)、非洲西部(WAFR)、欧洲北部(NEUR)、欧洲南部(SEUR)、亚洲东部(EAS)和亚洲南部(SAS)。从 PheWAS 中,我们发现在 EAFR、WAFR 和 SEUR 中,phecode 类别显著富集肿瘤;在 SEUR、NEUR、SAS 和 EAS 中,显著富集妊娠并发症(p < 0.003)。然后,我们选择了表型高血压(HTN)和心房颤动(AFib),使用逻辑回归模型和非线性限制立方样条模型(RCS)进一步研究这些表型与 EAFR、WAFR、SEUR 和 NEUR 之间的关系。对于 EAS 和 SAS,我们选择肾衰竭(RF)进行进一步建模。线性模型最符合高血压和心房颤动与祖先 EAFR、WAFR 和 SEUR 之间的关系(所有模型的贝塔值 p < 1x10-4),而 RCS 最符合与 NEUR 之间的关系(高血压方差分析 p = 0.001,心房颤动方差分析 p < 1x10-4)。就 RF 而言,线性模型最符合与 SAS 的关系(β p < 1x10-4),而 RCS 模型更符合与 EAS 的关系(方差分析 p < 1x10-4)。在这项研究中,我们确定了非线性建模技术最适合的遗传血统与表型之间的关系。回归建模的线性假设是正确拟合模型不可或缺的条件,而且在建模之前无法知道两者之间是否真的存在线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Generating new drug repurposing hypotheses using disease-specific hypergraphs. Impact of Measurement Noise on Genetic Association Studies of Cardiac Function. Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data. intCC: An efficient weighted integrative consensus clustering of multimodal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1